Publications by authors named "Akira Hidaka"

The COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has proven to be devastating to society. Mucosal vaccines that can induce antigen-specific immune responses in both the systemic and mucosal compartments are considered an effective measure to overcome infectious diseases caused by pathogenic microbes. We have recently developed a nasal vaccine system using cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and cholesteryl 3β-N-(dimethylaminoethyl)carbamate in mice.

View Article and Find Full Text PDF

Objective: Infectious diseases remain a threat to human life. Vaccination against pathogenic microbes is a primary method of treatment as well as prevention of infectious diseases. Particularly mucosal vaccination is a promising approach to fight against most infectious diseases, because mucosal surfaces are a major point of entry for most pathogens.

View Article and Find Full Text PDF

Background: To overcome infectious diseases, the development of mucosal vaccines would be an effective strategy, since mucosal surfaces are the entry site for most pathogens. In general, protein antigens show inherently poor immunogenicity when administered by the mucosal route. Therefore, co-administration of an appropriate mucosal adjuvant is required to exert immune responses toward pathogen-derived antigens effectively.

View Article and Find Full Text PDF

Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens.

View Article and Find Full Text PDF

Macrophages are well known for their ability to induce diverse beneficial immune responses, especially in the defense against pathogens. However, an excessive activation of macrophages may cause harmful inflammation. In this context, the suppression of excessive macrophage activation would be a promising therapeutic strategy for treating inflammatory diseases.

View Article and Find Full Text PDF

The structure of a high-loading complex of ZSM-5 with 6.4 toluene molecules per unit cell has been determined by single-crystal X-ray diffraction. At least three kinds of toluene molecules were identified in the unit cell.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrvfqmp4r7jif362ul9otpdiidhops5i3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once