Publications by authors named "Akio Satow"

N-desmethylclozapine (NDMC), one of the major metabolites of clozapine, has been demonstrated to exhibit partial agonistic activity at M(1) muscarinic receptors in vitro. Behavioral effects of NDMC were examined to determine whether NDMC contributed to the antipsychotic effects of clozapine via activation of muscarinic receptors. Both NDMC (10-30 mg/kg) and its parent compound clozapine (3-10 mg/kg) antagonized the disruption of prepulse inhibition (PPI) caused by the indirect dopamine agonist methamphetamine (3 mg/kg) in rats.

View Article and Find Full Text PDF

Schizophrenic patients typically exhibit impairment of sensorimotor gating, which can be modeled in animals using acoustic prepulse inhibition of the startle. Both classical and atypical antipsychotics have been shown to improve prepulse inhibition in DBA/2J mice, a non-pharmacological model for impaired sensorimotor gating. The purpose of the present study was to clarify whether metabotropic glutamate receptors participate in control of sensorimotor gating.

View Article and Find Full Text PDF

We recently identified 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), the first allosteric metabotropic glutamate (mGlu) 7 receptor-selective negative allosteric modulator. In this study, we examined the in vivo pharmacological effects of MMPIP on the central nervous system. MMPIP was distributed into the brain after systemic administration in both mice and rats.

View Article and Find Full Text PDF

We describe here the discovery and biological profile of a series of isoindolinone derivatives as developed mGluR1 antagonists. Our combined strategy of rapid parallel synthesis and conventional medicinal optimization successfully led to N-cyclopropyl 22 and N-isopropyl isoindolinone analogs 21 and 23 with improved in vivo DMPK profiles. Moreover the most advanced analog 23 showed an oral antipsychotic-like effect at a dose of 1mg/kg in an animal model.

View Article and Find Full Text PDF

We identified 4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide 27 as a potent mGluR1 antagonist. The compound possessed excellent subtype selectivity and good PK profile in rats. It also demonstrated relatively potent antipsychotic-like effects in several animal models.

View Article and Find Full Text PDF

The aim of this study was to clarify the relationship between receptor occupancy and in vivo pharmacological activity of mGluR1 antagonists. The tritiated mGluR1-selective allosteric antagonist [(3)H]FTIDC (4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide) was identified as a radioligand having high affinity for mGluR1-expressing CHO cells (K(D) = 2.1 nM) and mouse cerebellum (K(D) = 3.

View Article and Find Full Text PDF

The advances in preclinical cancer models, including orthotopic implantation models or genetically engineered mouse models of cancer, enable pursuing the molecular mechanism of cancer disease that might mimic genetic and biological processes in humans. Lung cancer is the major cause of cancer deaths; therefore, the treatment and prevention of lung cancer are expected to be improved by a better understanding of the complex mechanism of disease. In this study, we have examined the quantification of two distinct mouse lung cancer models by utilizing imaging modalities for monitoring tumor progression and drug efficacy evaluation.

View Article and Find Full Text PDF

A newly discovered metabotropic glutamate receptor (mGluR) 1 allosteric antagonist, 2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one (CFMTI), was tested both in vitro and in vivo for its pharmacological effects. CFMTI demonstrated potent and selective antagonistic activity on mGluR1 in vitro and in vivo after oral administration. CFMTI inhibited L-glutamate-induced intracellular Ca(2+) mobilization in Chinese hamster ovary cells expressing human and rat mGluR1a, with IC(50) values of 2.

View Article and Find Full Text PDF

We describe here the discovery and the structure-activity relationship (SAR) of a series of 4-(1-Aryltriazol-4-yl)-tetrahydropyridines as novel mGluR1 antagonists. Our extensive chemical modification of lead compound 2 successfully led to fluoropyridine analogs 7j and 1 with improved in vivo antagonistic activities. Among the evaluated compounds, chemically stable urea analog 1 showed oral antagonistic activity at dose ranges of 10-30mg/kg in an animal model.

View Article and Find Full Text PDF

Pharmacological evidence has implicated cholinergic dysfunction in the manifestation of psychotic symptoms. The purpose of the present study was to clarify the roles of muscarinic and nicotinic receptors in several animal models of schizophrenia. A muscarinic receptor agonist, oxotremorine (0.

View Article and Find Full Text PDF

The functional roles of metabotropic glutamate receptor (mGluR) 1 in integrative brain functions were investigated using a potent and selective mGluR1 allosteric antagonist, FTIDC [4-[1-(2-fluoropyridine-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide], in comparison with the mGluR5 allosteric antagonist and the mGluR2/3 orthosteric agonist in rodents. FTIDC reduced maternal separation-induced ultrasonic vocalization and stress-induced hyperthermia without affecting behaviors in the elevated plus maze. An mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and an mGluR2/3 agonist, LY379268 [(1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.

View Article and Find Full Text PDF

It is known for the non-selective group I metabotropic glutamate (mGlu) receptors agonist (S)-3,5-dihydroxyphenylglycine (S-3,5-DHPG) to cause convulsions, which are mediated by mGlu1 receptor. However, the behavioral changes other than convulsions caused by (S)-3,5-DHPG have not been well studied. The purpose of the present study was to explore the behavioral changes elicited by activation of group I mGlu receptors with (S)-3,5-DHPG and to clarify which, mGlu1 receptor or mGlu5 receptor, is responsible for such behavior.

View Article and Find Full Text PDF
Article Synopsis
  • FTIDC is a strong and selective antagonist for the metabotropic glutamate receptor (mGluR) 1, effectively blocking intracellular calcium mobilization in various species, including humans and rodents.
  • Its potency varies between receptors, showing an IC(50) of 5.8 nM for human mGluR1a and significantly less for mGluR5, with no activity towards other mGluR types.
  • FTIDC not only acts as an allosteric antagonist but also inhibits certain behaviors in mice without causing motor impairments, indicating its potential use in studying mGluR1 functions in both animal models and humans.
View Article and Find Full Text PDF