Cold-adapted or psychrotrophic fermentative anaerobic bacteria were isolated from rice field soil in a temperate area in Japan using anaerobic enrichment cultures incubated at 5°C. Most isolates were obligately anaerobic, spore-forming rods and affiliated with different lineages of the genus Clostridium based on 16S rRNA gene sequences. The growth temperature ranges and physiological properties of three representative clostridial isolates (C5S7, C5S11, and C5S18) were examined.
View Article and Find Full Text PDFInterchange between the nickel +2 and +3 oxidation states precisely controls the reversible rearrangement of the tris(2-pyridylthio)methanide (tptm) ligand in the organometallic nickel(II) complex [{Ni(μ-Br)-(tptm)}(2)] (2). Oxidation of 2 first gives the corresponding Ni(III) complex [{Ni(μ-Br)(tptm)}(2)][PF(6)](2) (4). However, in solution the tptm ligand in 4 slowly undergoes a rearrangement, in which the N and S atoms of one of the pyridylthiolate arms exchange Ni and C bonding partners, thereby resulting in an "N,S-confused" isomer of tptm in the product, [NiBr(bpttpm)]PF(6) (5; bpttpm= bis(2-pyridylthio)(2-thiopyridinium)-methyl).
View Article and Find Full Text PDFTris(2-pyridylthio)methane (tptmH) reacts with ZnCl(2) producing the Zn-C containing complex of [ZnCl(tptm)], whose cyclic voltammogram shows an irreversible oxidation peak at 0.2 V vs. E(0')(Fc(+/0)).
View Article and Find Full Text PDFThe photoinduced electron transfer of a series of meta- and para-linked triphenylamine-naphthalimide dyads, N-{3- and 4-[bis(4-R-substituted phenyl)amino]phenyl}-1,8-naphthalimide, 1m,p (R = H), 2m,p (R = Me), 3m,p (R = OMe), and 4m,p (R = NMe2) was investigated in toluene and DMF. The singlet charge-transfer (CT) states were observed in all cases. The decay rates were found to be faster in DMF (tau = 6.
View Article and Find Full Text PDFQuinoline-based, tetradentate nitrogen ligands, N,N'-bis(2-quinolylmethyl)-N,N'-dialkyl-1,2-ethanediamine (alkyl = methyl, bqdmen; ethyl, bqdeen; isopropyl, bqdpen), have been investigated as the supporting ligands for the formation of bis(micro-oxo) dinuclear manganese complexes. Bis(micro-oxo)Mn(2)(iii,iii) complexes and were obtained for bqdmen and bqdeen, respectively, as evidenced by X-ray crystallography, whereas bqdpen did not afford any manganese complexes due to its steric bulk. Complexes and exhibit highly positive Mn(2)(iii,iii)/Mn(2)(iii,iv) and Mn(2)(iii,iv)/Mn(2)(iv,iv) redox couples relative to the corresponding pyridine-ligated (micro-O)(2)Mn(2)(iii,iii) complexes.
View Article and Find Full Text PDFSeveral open-chained analogues of UK-2A, a novel antifungal antibiotic isolated from Streptomyces sp. 517-02, were prepared for structure-activity studies. The in vitro antifungal activities of these compounds against Rhodotorula mucilaginosa IFO 0001 and the inhibition of uncoupler-stimulated respiration in bovine heart submitochondrial particles (SMP) were evaluated.
View Article and Find Full Text PDFTwo new dinuclear Ru(III) complexes containing naphthalene moieties, K[Ru2(dhpta)(mu-O2CCH2-1-naph)2] (1) and K[Ru2(dhpta)(mu-O2CCH2-2-naph)2] (2) (H5dhpta = 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid, naph-1-CH2CO2H = 1-naphthylacetic acid, naph-2-CH2CO2H = 2-naphthylacetic acid), were synthesized. Complex 2 crystallized as an orthorhombic system having a space group of Pbca with unit cell parameters a = 10.6200(5) A, b = 20.
View Article and Find Full Text PDFThiacalix[3]pyridine (Py3S3) consists of pyridines and bridging sulfur atoms producing a stable octahedral mononuclear Rh(II) complex [Rh(II)(Py3S3)2]2+ showing mutual Jahn-Teller effect, a metal based reversible redox couple of Rh(III/II) at 0.02 V vs. SCE and a g(perpendicular) > g(||) relationship in EPR measurements.
View Article and Find Full Text PDFCross-linked poly-gamma-glutamic acid (C-L gamma-PGA) at 5 microg/ml flocculated bentonite suspension pretreated with polyaluminum chloride (PAC) at 2 microg/ml Al3+-PAC to a transparency of approximately 30% after 30 min and more than 90% after 4 h, while Al3+ concentration in the upper phase of the suspension decreased with incubation time. When pretreated with FeCl3 at 16 microg/ml Fe3+-FeCl3, similar results were obtained. In the case of Escherichia coli suspension, the combination of C-L gamma-PGA and FeCl3 demonstrated a more marked flocculating activity with a satisfactory transparency occurring after 30 min of treatment, accompanied by a decrease in residual Fe3+ concentration.
View Article and Find Full Text PDFA complete series of copper(ii) halide complexes [CuX(tptm)](X = F (), Cl (), Br (), I (); tptm = tris(2-pyridylthio)methyl) with a novel Cu(II)-C(sp(3)) bond has been prepared by the reactions of [Cu(tptm)(CH(3)CN)]PF(6)(.PF(6)) with corresponding halide sources of KF or n-Bu(4)NX (X = Cl, Br, I), and the trigonal bipyramidal structures have been confirmed by X-ray crystallography and/or EPR spectroscopy. The iodide complex easily liberates the iodide anion in acetonitrile forming the acetonitrile complex as a result.
View Article and Find Full Text PDFNew proton and electron donors, M(II)(HL)(2) (M = Ni, Pd, Pt; L = 5,6-diethylpyradzinedithiolate), as well as a proton and electron acceptor, Pt(IV)(L)(2), were prepared and characterized. The pH-dependent cyclic voltammetry of the M(II)(HL)(2) complexes revealed a favorable Gibbs free energy (K(com) > 1) for the proton and electron transfer reactions from M(II)(HL)(2) to M(IV)(L)(2); i.e.
View Article and Find Full Text PDFThe novel (mu-alkoxo)bis(mu-carboxylato)diruthenium complex K[Ru(2)(dhpta)(mu-O(2)C-p-ZnTPP)(2)] 3 was prepared by simple ligand substitution reaction. Strong antiferromagnetic interaction between two Ru(III) ions of 3 was observed with a coupling constant of -425 approximately -404 cm(-1). The cyclic voltammogram of 3 can be explained in terms of superposition of those of ZnTPP-p-CO(2)H and K[Ru(2)(dhpta)(mu-O(2)CPh)(2)] 2, indicating no significant electrochemical interaction.
View Article and Find Full Text PDF[structure: see text] A trimeric phenothiazine and its radical cation were prepared, and their structures were elucidated. In contrast to a largely twisted structure in the neutral species, the radical cation had a unique structure deformation that allowed charge-transfer-type conjugation from the outer phenothiazine rings to the central phenothiazine radical cation.
View Article and Find Full Text PDFTwo chargeless VO(IV) complexes with 3-hydroxypyridine-2-carboxylic acid (H2hpic), [VO(Hhpic-O,O)(Hhpic-O,N)(H2O)].3H2O (1) and the cyclic tetramer [(VO)4(mu-(hpic-O,O',N))4(H2O)4].8H3O (2), have been synthesized and characterized by elemental analysis, mass, infrared, electronic absorption, electron spin resonance (ESR) spectroscopies, and X-ray crystallography.
View Article and Find Full Text PDFStructures, chemical properties, and in vitro insulinomimetic activities of new vanadyl [oxovanadium(IV), VO(2+)] complexes with five tripodal ligands containing an imidazole functionality were examined. The ligands, N-(carboxymethyl)- N-(4-imidazolylmethyl)amino acids, contain glycine, ( S)- and ( R)-alanine, and ( S)- and ( R)-leucine residues. The molecular structures of the latter four alanine- and leucine-containing complexes were determined by X-ray analysis.
View Article and Find Full Text PDFRhodium(III) porphyrin complexes, [Rh(4-PyT(3)P)Cl](4) (1) and [Rh(2-PytB(3)P)Cl](2) (2) (4-PyT(3)P = 5-(4-pyridyl)-10,15,20-tritolylporphyrinato dianion, 2-PytB(3)P = 5-(2-pyridyl)-10,15,20-tri(4-tert-butyl)phenylporphyrinato dianion), were self-assembled and characterized by (1)H nuclear magnetic resonance spectroscopy, infrared spectroscopy, and electron spray ionization-mass spectroscopy methods. The spectroscopic results certified that the rhodium porphyrin complexes 1 and 2 have a cyclic tetrameric structure and a cofacial dimeric structure, respectively. The X-ray structure analysis of 1 confirmed the cyclic structure of the complex.
View Article and Find Full Text PDFA series of cofacially arranged ruthenium(II) porphyrin dimers 1-5 having a variety of axial ligands such as CO, pyridine, and 4-cyanopyridine, were synthesized. Porphyrin tetramers, 6 and 7, which have pyridylporphyrin ligands at the axial positions of the parent cofacial ruthenium(II) dimers, were also prepared. These porphyrin dimers and tetramers were characterized by (1)H NMR spectroscopy, ESI (electrospray ionization)-mass spectroscopy, and elemental analysis.
View Article and Find Full Text PDFA series of ruthenium(II) porphyrin dimers and trimers (carbonyl dimers, 1-4; carbonyl trimers, 5-7, bis(pyridyl) trimers, 8-10), having axial or bridging porphyrin ligands, were synthesized and characterized by (1)H NMR and IR spectroscopy and mass spectrometry. An X-ray structural determination of Ru(II)(OEP)(CO)(H(2)PyP(3)P) (1) (OEP = octaethylporphyrinato dianion, H(2)PyP(3)P = 5-pyridyl-10,15,20-triphenylporphyrinato dianion) was carried out. The axial porphyrin ligand is coordinated to the ruthenium porphyrin subunit obliquely.
View Article and Find Full Text PDF