Introduction: Trifluridine/tipiracil hydrochloride (FTD/TPI, Lonsurf®) is an oral antineoplastic agent that has been approved as late-stage chemotherapy for colorectal cancer. Its major mechanism of action is the dysfunction of tumoral DNA including DNA strand breaks and decreased replication. Fruquintinib (ELUNATE®) is a novel kinase inhibitor that selectively inhibits the vascular endothelial growth factor receptor-1, -2, and -3.
View Article and Find Full Text PDFDeficiency in DNA repair proteins confers susceptibility to DNA damage, making cancer cells vulnerable to various cancer chemotherapies. 5-Fluorouracil (5-FU) is an anticancer nucleoside analog that both inhibits thymidylate synthase (TS) and causes DNA damage via the misincorporation of FdUTP and dUTP into DNA under the conditions of dTTP depletion. However, the role of the DNA damage response to its antitumor activity is still unclear.
View Article and Find Full Text PDF5-Fluorouracil (5-FU) is an antimetabolite and exerts antitumor activity via intracellularly and physiologically complicated metabolic pathways. In this study, we designed a novel small molecule inhibitor, TAS-114, which targets the intercellular metabolism of 5-FU to enhance antitumor activity and modulates catabolic pathway to improve the systemic availability of 5-FU. TAS-114 strongly and competitively inhibited deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), a gatekeeper protein preventing aberrant base incorporation into DNA, and enhanced the cytotoxicity of fluoropyrimidines in cancer cells; however, it had little intrinsic activity.
View Article and Find Full Text PDFTAS-102 is a novel oral nucleoside antitumor agent containing trifluridine (FTD) and tipiracil hydrochloride (TPI). The compound improves overall survival of colorectal cancer (CRC) patients who are insensitive to standard chemotherapies. FTD possesses direct antitumor activity since it inhibits thymidylate synthase (TS) and is itself incorporated into DNA.
View Article and Find Full Text PDFDeoxyuridine triphosphatase (dUTPase) has emerged as a potential target for drug development as a 5-fluorouracil-based combination chemotherapy. We describe the design and synthesis of a novel class of human dUTPase inhibitors, 1,2,3-triazole-containing uracil derivatives. Compound 45a, which possesses 1,5-disubstituted 1,2,3-triazole moiety that mimics the amide bond of tert-amide-containing inhibitor 6b locked in a cis conformation showed potent inhibitory activity, and its structure-activity relationship studies led us to the discovery of highly potent inhibitors 48c and 50c (IC(50) = ~0.
View Article and Find Full Text PDFHuman deoxyuridine triphosphatase (dUTPase) inhibition is a promising approach to enhance the efficacy of thymidylate synthase (TS) inhibitor based chemotherapy. In this study, we describe the discovery of a novel class of human dUTPase inhibitors based on the conformation restriction strategy. On the basis of the X-ray cocrystal structure of dUTPase and its inhibitor compound 7, we designed and synthesized two conformation restricted analogues, i.
View Article and Find Full Text PDFInhibition of human deoxyuridine triphosphatase (dUTPase) has been identified as a promising approach to enhance the efficacy of 5-fluorouracil (5-FU)-based chemotherapy. This study describes the development of a novel class of dUTPase inhibitors based on the structure-activity relationship (SAR) studies of uracil derivatives. Starting from the weak inhibitor 7 (IC(50) = 100 μM), we developed compound 26, which is the most potent human dUTPase inhibitor (IC(50) = 0.
View Article and Find Full Text PDF1-(3-C-Ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd, TAS-106) is a novel antitumor ribonucleoside that inhibits RNA polymerase. In the present study, we investigated the cellular and molecular interactions between TAS-106 and cisplatin (CDDP) in vitro using A549 human lung cancer cells and the in vivo antitumor effect of combined treatment using OCC-1 and LX-1 human tumor xenografts. The treatment effects were determined by evaluating cytotoxicity, the cell cycle distribution, apoptosis induction and the expression of checkpoint-associated proteins.
View Article and Find Full Text PDFGiven such differences as relative tumor burden, the optimal dose and schedule for postoperative adjuvant chemotherapy of microscopic disease might be expected to differ significantly from therapy of advanced higher volume disease. We investigated this hypothesis by determining the optimal dose and schedule of the 5-FU pro-drug, UFT, for treatment of early versus later stage disease models of the Lewis lung carcinoma (LLC). Postoperative adjuvant therapy of early stage disease was modeled by intravenous injection of LLC cells and initiating therapy one day later, thus simulating the presence of micrometastases at the time of surgery.
View Article and Find Full Text PDFTrifluorothymidine (FTD) is a thymidine analog that exhibits an antitumor activity through its inhibition of thymidylate synthase and its incorporation into DNA. However, FTD is rapidly hydrolyzed to an inactive form by thymidine phosphorylase (TP). We attempted to augment the antitumor activity of FTD by combining it with a potent and reversible inhibitor of TP, 5-chloro-6-(2-imino-propyrrolidin-1-yl) methyl-2, 4 (1H, 3H)-pyrimidinedione hydrochloride (TPI) in human tumor xenografts with a low sensitivity to 5-fluorouracil.
View Article and Find Full Text PDFThe purposes of this study were to evaluate the antitumor activity of S-1 (1 M tegafur, 0.4 M 5-chloro-2,4-dihydroxypyridine and 1 M potassium oxonate) on human lung tumor xenografts, as compared with other fluoro-pyrimidines, and to investigate the relationships between fluoropyrimidine antitumor activities and four distinct enzymatic activities involved in the phosphorylation and degradation pathways of 5-fluorouracil (5-FU) metabolism. S-1, UFT (1 M tegafur-4 M uracil), 5'-deoxy-5-fluorouridine (5'-DFUR), capecitabine and 5-FU were administered for 14 consecutive days to nude mice bearing lung tumor xenografts.
View Article and Find Full Text PDFWe established a variant of MIAPaCa-2 human pancreatic cancer cells that is resistant to 2',2'-difluorodeoxycytidine (gemcitabine, dFdCyd), MIAPaCa-2/dFdCyd, and elucidated the biochemical characteristics and mechanism of dFdCyd-resistance in these cells. We also evaluated 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd, TAS-106, RNA polymerase inhibitor), a new anticancer ribonucleoside, for antitumor activity against the resistant cells in vitro and in vivo. MIAPaCa-2/dFdCyd cells were 2541-fold more resistant to dFdCyd than parental MIAPaCa-2 cells, and the major mechanism of the dFdCyd-resistance was found to be a decrease in the intracellular pool of dFdCyd and its active metabolites, which would result in a decrease in incorporation of dFdCyd triphosphate into DNA.
View Article and Find Full Text PDFTAS-102 is a combination drug consisting of alpha,alpha,alpha-trifluorothymidine (FTD) and thymidine phosphorylase inhibitor (TPI). FTD is converted to F3TMP by thymidine kinase and inhibits the thymidylate synthetase (TS) activity by binding to TS. In addition, FTD triphosphate form, F3TTP is incorporated into DNA, which leads to cytocidal effects.
View Article and Find Full Text PDFTAS-102 is a new oral anti-cancer drug preparation, composed of a 1:0.5 mixture (on a molar basis) of alpha,alpha,alpha-trifluorothymidine (FTD) and 5-chloro-6-[1-(2-iminopyrrolidinyl)methyl]-2,4(1H,3H)-pyrimidinedione hydrochloride (TPI). TAS-102 currently undergoing clinical trials, has been demonstrated to have at least two mechanisms, inhibition of TS and incorporation into DNA.
View Article and Find Full Text PDFTo evaluate the antitumor efficacy against metastatic breast cancer of fluoropyrimidines alone and combined with other chemotherapeutic agents, we developed a murine model of breast cancer metastatic to the lung by orthotopically implanting MDA-MB-435S breast tumors into mice. MDA tumor cells greatly metastasized to lung tissue only after the orthotopically implanted tumors were surgically removed. Measurement of the expression of enzymes involved in 5-FU metabolism showed significantly higher activity of dihydropyrimidine dehydrogenase (DPD) and lower activity of thymidylate synthase (TS) in the MDA metastases than in the orthotopically implanted tumors.
View Article and Find Full Text PDF