Electron transport in bilayer graphene placed under a perpendicular electric field is revealed experimentally. Steep increase of the resistance is observed under high electric field; however, the resistance does not diverge even at low temperatures. The observed temperature dependence of the conductance consists of two contributions: the thermally activated (TA) conduction and the variable range hopping (VRH) conduction.
View Article and Find Full Text PDFWe developed a simple and novel method to fabricate complementary-like logic inverters based on ambipolar graphene field-effect transistors (FETs). We found that the top gate stacks (with both the metal and oxide layers) can be simply prepared with only one-step deposition process and show high capacitive efficiency. By employing such a top gate as the operating terminal, the operating bias can be lowered within 2 V.
View Article and Find Full Text PDFTemperature dependence of zero-bias conductance of the vanadium (V)/multiwall carbon nanotube (MWNT)/V structure is studied. As temperature is reduced, the conductance decreases with a functional form consistent with a power law. For the first time, we find that the exponent depends significantly on gate voltage.
View Article and Find Full Text PDFWe have observed a superconductor-insulator transition in one-dimensional (1D) arrays of small Josephson junctions by changing both the resistance R(S) of normal metal resistors shunting each junction and the ratio of the Josephson coupling energy E(J) to the charging energy E(C). The phase boundary lies at R(S) approximately R(Q) (R(Q) identical with h/4e(2)=6.45 kOmega) when E(J)/E(C) is smaller than about unity.
View Article and Find Full Text PDF