Background: The annual administration of the influenza vaccine is the most effective method for preventing influenza. We have evaluated the effectiveness of the inactivated influenza vaccine in children aged 6 months to 15 years across the seasons from 2013/2014 to 2022/2023. This study aims to investigate the effectiveness of the inactivated influenza vaccine in the 2023/2024 season, the first year following the easing of strict COVID-19 measures, and possibly the last season when only the inactivated vaccine is available on the market.
View Article and Find Full Text PDFIntroduction: The risk factors in pediatric influenza immediately before the COVID-19 era are not well understood. This study aims to evaluate the risk factors for hospitalization in pediatric influenza A and B for the recent seasons.
Methods: Children with a fever of ≥38 °C and laboratory-confirmed influenza at 20 hospitals in outpatient settings in Japan in the 2013/14 to 2019/20 seasons were retrospectively reviewed.
During influenza epidemics, Japanese clinicians routinely conduct rapid influenza diagnostic tests (RIDTs) in patients with influenza-like illness, and patients with positive test results are treated with anti-influenza drugs within 48 h after the onset of illness. We assessed the vaccine effectiveness (VE) of inactivated influenza vaccine (IIV) in children (6 months-15 years old, N = 4243), using a test-negative case-control design based on the results of RIDTs in the 2018/19 season. The VE against influenza A(H1N1)pdm and A(H3N2) was analyzed separately using an RIDT kit specifically for detecting A(H1N1)pdm09.
View Article and Find Full Text PDFInfection is the single greatest threat to survival during cancer chemotherapy because of depletion of bone marrow-derived immune cells. Phagocytes, especially neutrophils, are key effectors in immunity to extracellular pathogens, which has limited the development of new approaches to protect patients with cancer and chemotherapy-induced neutropenia. Using a model of vaccine-induced protection against lethal Pseudomonas aeruginosa pneumonia in the setting of chemotherapy-induced neutropenia, we found a population of resident lung macrophages in the immunized lung that mediated protection in the absence of neutrophils, bone marrow-derived monocytes, or antibodies.
View Article and Find Full Text PDFNecroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S.
View Article and Find Full Text PDFThe usefulness of vaccine-based strategies to prevent lethal bacterial infection in a host with neutropenia is not well-defined. Here, we show in a neutropenic mouse model that immunity induced by mucosal vaccination with a live-attenuated Pseudomonas aeruginosa vaccine is protective against lethal P. aeruginosa pneumonia caused by both vaccine-homologous and vaccine-heterologous strains, whereas passive immunization confers only vaccine-homologous protection.
View Article and Find Full Text PDFMicroarray analysis of Pseudomonas aeruginosa mRNA transcripts expressed in vivo during animal infection has not been previously used to investigate potential virulence factors needed in this setting. We compared mRNA expression in bacterial cells recovered from the gastrointestinal (GI) tracts of P. aeruginosa-colonized mice to that of P.
View Article and Find Full Text PDFMany animal studies investigating adaptive immune effectors important for protection against Pseudomonas aeruginosa have implicated opsonic antibody to the antigenically variable lipopolysaccharide (LPS) O antigens as a primary effector. However, active and passive vaccination of humans against these antigens has not shown clinical efficacy. We hypothesized that optimal immunity would require inducing multiple immune effectors targeting multiple bacterial antigens.
View Article and Find Full Text PDFBackground: Laboratory systems to study bacterial transmission and mucosal colonization leading to infection have not been utilized.
Methods: We determined whether transmission of various strains of Pseudomonas aeruginosa among individual mice could occur and investigated the properties of such strains in establishing gastrointestinal (GI) mucosal colonization as well as in disseminating systemically after induction of neutropenia.
Results: P.
In a murine model of acute fatal pneumonia, we previously showed that nasal immunization with a live-attenuated aroA deletant of Pseudomonas aeruginosa strain PAO1 elicited LPS serogroup-specific protection, indicating that opsonic Ab to the LPS O Ag was the most important immune effector. Because P. aeruginosa strain PA14 possesses additional virulence factors, we hypothesized that a live-attenuated vaccine based on PA14 might elicit a broader array of immune effectors.
View Article and Find Full Text PDFTokai J Exp Clin Med
September 2007
We experienced a case of a 2-year-old boy, who presented with steroid resistant nephrotic syndrome, which developed insidiously. Renal biopsy revealed that he had focal and segmental glomerulosclerosis on light microscopy, dominant mesangial deposition of C1q by immunofluorescent staining, and electron dense deposits on electron microscopy, which are all compatible with C1q nephropathy. He had no clinical sign of any collagen diseases, including systemic lupus erythematodes.
View Article and Find Full Text PDF