Microfluidic wet spinning has gained increasing interest in recent years as an alternative to conventional wet spinning by offering higher control in fiber morphology and a gateway for the development of multi-material fibers. Conventionally, microfluidic chips used to create such fibers are fabricated by soft lithography, a method that requires both time and investment in necessary cleanroom facilities. Recently, additive manufacturing techniques were investigated for rapid and cost-efficient prototyping.
View Article and Find Full Text PDFOxygen is ubiquitous in nature and it plays a key role in several biological processes, such as cellular respiration and food deterioration, to name a few. Currently, reversible and non-destructive oxygen sensing is usually performed with sensors produced by photosensitization of phosphorescent organometallic complexes. In contrast, we propose a novel route of optical oxygen sensing by fluorescence-based quenching of oxygen.
View Article and Find Full Text PDF