Publications by authors named "Akimov I"

Quantum technologic and spintronic applications require reliable material platforms that enable significant and long-living spin polarization of excitations, the ability to manipulate it optically in external fields, and the possibility to implement quantum correlations between spins, i.e., entanglement.

View Article and Find Full Text PDF

Coherent spin dynamics of electrons and holes are studied in hybrid organic-inorganic lead halide perovskite FAPbBr bulk single crystals using the time-resolved Kerr ellipticity technique at cryogenic temperatures. The Larmor spin precession of the carrier spins in a magnetic field is monitored to measure the Landé -factors of electrons (+2.44) and holes (+0.

View Article and Find Full Text PDF

Compositional engineering of the optical properties of hybrid organic-inorganic lead halide perovskites is crucial for the realization of efficient solar cells and light-emitting devices. We study the effect of band gap fluctuations on coherent exciton dynamics in a mixed FACsPbIBr perovskite crystal by using photon echo spectroscopy. We reveal a narrow homogeneous exciton line width of 16 μeV at a temperature of 1.

View Article and Find Full Text PDF

Hybrid ferromagnet-semiconductor systems possess new outstanding properties, which emerge when bringing magnetic and semiconductor materials into contact. In such structures, the long-range magnetic proximity effect couples the spin systems of the ferromagnet and semiconductor on distances exceeding the carrier wave function overlap. The effect is due to the effective p-d exchange interaction of acceptor-bound holes in the quantum well with d-electrons of the ferromagnet.

View Article and Find Full Text PDF

Spin waves in magnetic microresonators are at the core of modern magnonics. Here we demonstrate a new method of tunable excitation of different spin wave modes in magnetic microdisks by using a train of laser pulses coming at a repetition rate higher than the decay rate of spin precession. The microdisks are etched in a transparent bismuth iron garnet film and the light pulses influence the spins nonthermally through the inverse Faraday effect.

View Article and Find Full Text PDF

Globally, about 70 million people are infected with the hepatitis C virus (HCV), and about 400 thousand people die annually from chronic hepatitis C complications. The management of patients with chronic hepatitis C may require HCV genotyping, since the efficiency of some widely used antiviral drugs strongly depend on the viral genotype and/or subtype. The most prevalent HCV circulating recombinant form, RF1_2k/1b, is misclassified as genotype 2 by many commercial HCV genotyping kits, based on the RT-PCR analysis of the 5' untranslated region of the HCV genome.

View Article and Find Full Text PDF
Article Synopsis
  • In a hybrid structure made of Fe/(Cd,Mg)Te/CdTe quantum wells, researchers found both short-range and long-range ferromagnetic proximity effects happening at the same time.
  • Short-range effects affect conduction band electrons through their wave function overlap with iron (Fe) film, while long-range effects influence holes bound to shallow acceptors without wave function overlap.
  • The fact that both effects exist together indicates a complex spin texture in the quantum well, suggesting different ways electrons and holes interact with ferromagnetic materials.
View Article and Find Full Text PDF

Energy harvesting is a concept which makes dissipated heat useful by transferring thermal energy to other excitations. Most of the existing principles are realized in systems which are heated continuously. We present the concept of high-frequency energy harvesting where the dissipated heat in a sample excites resonant magnons in a thin ferromagnetic metal layer.

View Article and Find Full Text PDF

Voltage control of ferromagnetism on the nanometer scale is highly appealing for the development of novel electronic devices with low power consumption, high operation speed, reliable reversibility and compatibility with semiconductor technology. Hybrid structures based on the assembly of ferromagnetic and semiconducting building blocks are expected to show magnetic order as a ferromagnet and to be electrically tunable as a semiconductor. Here, we demonstrate the electrical control of the exchange coupling in a hybrid consisting of a ferromagnetic Co layer and a semiconductor CdTe quantum well, separated by a thin non-magnetic (Cd,Mg)Te barrier.

View Article and Find Full Text PDF

The 26th of April 2016 marked 30 years since the Chernobyl accident has occurred in Ukraine. As a result, the uninhabited Chernobyl region has been directly exposed to ionizing radiation for >30 years. Most work has focused on identifying associations between levels of radiation and the abundance, distribution, and mutation rates of plants and animals.

View Article and Find Full Text PDF

Coherent optical spectroscopy such as four-wave mixing and photon echo generation deliver rich information on the energy levels involved in optical transitions through the analysis of polarization of the coherent response. In semiconductors, it can be applied to distinguish between different exciton complexes, which is a highly non-trivial problem in optical spectroscopy. We develop a simple approach based on photon echo polarimetry, in which polar plots of the photon echo amplitude are measured as function of the angle φ between the linear polarizations of the two exciting pulses.

View Article and Find Full Text PDF

Background: Species of Canidae in Russia can be infested with up to 24 different tick species; however, the frequency of different tick species infesting domestic dogs across Russia is not known. In addition, tick-borne disease risks for domestic dogs in Russia are not well quantified. The goal of this study was to conduct a nationwide survey of ticks collected from infested dogs admitted to veterinary clinics in Russian cities and to identify pathogens found in these ticks.

View Article and Find Full Text PDF

Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types.

View Article and Find Full Text PDF
Article Synopsis
  • * The study found that 11.1% of I. ricinus ticks tested positive for pathogens such as Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti, with some ticks showing mixed infections.
  • * Additionally, 10.1% of D. reticulatus ticks were positive for Rickettsia raoultii, highlighting the need for monitoring and understanding tick-borne diseases in urban settings.
View Article and Find Full Text PDF

The evaluation of content of DNA of lactobaccilli and particular types of aerobic anaerobic opportunistic bacteria in sampling of scrapes from urogenital tract offemale patients of the network laboratory INVITRO was implemented. The technique of polymerase chain reaction in real-time was implemented. It is demonstrated that decreasing of content of lactobaccilli in total bacterial mass isfollowed by increasing of occurrence, concentration and relative content of all types of opportunistic pathogens except ureaplasmna.

View Article and Find Full Text PDF

The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type BiLuFeAlO or Bi₃Fe₅O:Dy₂O₃ in between two magneto-hard garnet material layers of composition type Bi₂Dy₁Fe₄Ga₁O or Bi₂Dy₁Fe₄Ga₁O:Bi₂O₃. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics.

View Article and Find Full Text PDF

Tick occurrence was studied in the Chernobyl exclusion zone (CEZ) during the August-October 2009-2012. Dermacentor reticulatus ticks were collected using the flagging method and then screened for infection with Anaplasma phagocytophilum and Babesia canis by a PCR method incorporating specific primers and sequence analysis. The prevalence of infection with B.

View Article and Find Full Text PDF

We present zero-, one-, and two-quantum two-dimensional coherent spectra of excitons and trions in a CdTe/(Cd,Mg)Te quantum well. The set of spectra provides a unique and comprehensive picture of the coherent nonlinear optical response. Distinct peaks in the spectra are manifestations of exciton-exciton and exciton-trion coherent coupling.

View Article and Find Full Text PDF

Magnetic field control of light is among the most intriguing methods for modulation of light intensity and polarization on sub-nanosecond timescales. The implementation in nanostructured hybrid materials provides a remarkable increase of magneto-optical effects. However, so far only the enhancement of already known effects has been demonstrated in such materials.

View Article and Find Full Text PDF

We report on magnetic field-induced oscillations of the photon echo signal from negatively charged excitons in a CdTe/(Cd,Mg)Te semiconductor quantum well. The oscillatory signal is due to Larmor precession of the electron spin about a transverse magnetic field and depends sensitively on the polarization configuration of the exciting and refocusing pulses. The echo amplitude can be fully tuned from the maximum down to zero depending on the time delay between the two pulses and the magnetic-field strength.

View Article and Find Full Text PDF

Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick.

View Article and Find Full Text PDF

Deregulation of the expression of the genes that are involved in the control of the cell cycle impairs cellular differentiation and leads to cell death. This process can result in uncontrollable cell proliferation and, subsequently, cancer development. In this study, we examined the effect of the silencing of cancer-related genes by small interfering RNAs (siRNA) targeted at mRNAof Her2, cyclin B1 (CCNB1), and protein kinase C(PKC) on the proliferation of human cancer cells of different origins.

View Article and Find Full Text PDF

We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100  mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons.

View Article and Find Full Text PDF

Plasmonics allows light to be localized on length scales much shorter than its wavelength, which makes it possible to integrate photonics and electronics on the nanoscale. Magneto-optical materials are appealing for applications in plasmonics because they open up the possibility of using external magnetic fields in plasmonic devices. Here, we fabricate a new magneto-optical material, a magnetoplasmonic crystal, that consists of a nanostructured noble-metal film on top of a ferromagnetic dielectric, and we demonstrate an enhanced Kerr effect with this material.

View Article and Find Full Text PDF