Bacterial collagen, produced via recombinant DNA methods, offers advantages including consistent purity, customizable properties, and reduced allergy potential compared to animal-derived collagen. Its controlled production environment enables tailored features, making it more sustainable, non-pathogenic, and compatible with diverse applications in medicine, cosmetics, and other industries. Research has focused on the engineering of collagen-like proteins to improve their structure and function.
View Article and Find Full Text PDFMycobacterium tuberculosis, the causative agent of tuberculosis disease, is one among the deadliest pathogens in the world. Due to long treatment regimen, HIV co-infection, persistence of bacilli in latent form and development of XDR and TDR strains of Mtb, tuberculosis has posed serious concerns for managing the disease, and calls for discovery of new drugs and drug targets. Using a computational pipeline involving analysis of the structural models of the Mtb proteome and an analysis of the ATPome, followed by a series of filters to identify druggable proteins, solubility and length of the protein, several candidate proteins were shortlisted.
View Article and Find Full Text PDFIn vitro mimicking conditions are thought to reflect the environment experienced by Mycobacterium tuberculosis inside the host granuloma. The majority of in vitro dormancy experimental models use laboratory-adapted strains H37Rv or Erdman instead of prevalent clinical strains involved during disease outbreaks. Thus, we included the most prevalent clinical strains (S7 and S10) of M.
View Article and Find Full Text PDF