Publications by authors named "Akiko Yokoseki"

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the CNS characterized by the production of disease-specific autoantibodies against aquaporin-4 (AQP4) water channels. Animal model studies suggest that anti-AQP4 antibodies cause a loss of AQP4-expressing astrocytes, primarily via complement-dependent cytotoxicity. Nonetheless, several aspects of the disease remain unclear, including: how anti-AQP4 antibodies cross the blood-brain barrier from the periphery to the CNS; how NMOSD expands into longitudinally extensive transverse myelitis or optic neuritis; how multiphasic courses occur; and how to prevent attacks without depleting circulating anti-AQP4 antibodies, especially when employing B-cell-depleting therapies.

View Article and Find Full Text PDF

Objective: Neuromyelitis optica spectrum disorder (NMOsd) is an autoimmune disorder of the central nervous system characterized by aquaporin-4 (AQP4) autoantibodies. The aim of this study was to elucidate the characteristics of involvement of the anterior visual pathway (AVP) and neurodegeneration via glia-neuron interaction in NMOsd.

Methods: Thirty Japanese patients with serologically verified NMOsd were assessed with a neuro-ophthalmological study.

View Article and Find Full Text PDF

The aim of this study was to elucidate the characteristics, pathogenesis and treatment strategy of hypertrophic pachymeningitis that is associated with myeloperoxidase anti-neutrophil cytoplasmic antibody (ANCA). We retrospectively investigated clinical, radiological, immunological and pathological profiles of 36 patients with immune-mediated or idiopathic hypertrophic pachymeningitis, including 17 patients with myeloperoxidase-ANCA, four patients with proteinase 3-ANCA, six patients with other immune-mediated disorders, and nine patients with 'idiopathic' variety. Myeloperoxidase-ANCA-positive hypertrophic pachymeningitis was characterized by: (i) an elderly female predominance; (ii) 82% of patients diagnosed with granulomatosis with polyangiitis (previously known as Wegener's granulomatosis) according to Watts' algorithm; (iii) a high frequency of patients with lesions limited to the dura mater and upper airways, developing headaches, chronic sinusitis, otitis media or mastoiditis; (iv) a low frequency of patients with the 'classical or generalized form' of granulomatosis with polyangiitis involving the entire upper and lower airways and kidney, or progressing to generalized disease, in contrast to proteinase 3-ANCA-positive hypertrophic pachymeningitis; (v) less severe neurological damage according to the modified Rankin Scale and low disease activity according to the Birmingham Vasculitis Activity Score compared with proteinase 3-ANCA-positive hypertrophic pachymeningitis; (vi) increased levels of CXCL10, CXCL8 and interleukin 6 in cerebrospinal fluids, and increased numbers of T cells, neutrophils, eosinophils, plasma cells and monocytes/macrophages in autopsied or biopsied dura mater with pachymeningitis, suggesting TH1-predominant granulomatous lesions in hypertrophic pachymeningitis, as previously reported in pulmonary or renal lesions of granulomatosis with polyangiitis; and (vii) greater efficacy of combination therapy with prednisolone and cyclophosphamide compared with monotherapy with prednisolone.

View Article and Find Full Text PDF

Fingolimod acts as a functional antagonist of the sphingosine-1-phosphate receptor, and it traps lymphocytes in secondary lymphoid organs and precludes their migration into the central nervous system. We report the case of a patient who suffered a relatively severe relapse of multiple sclerosis (MS) during the initial 3 months of fingolimod therapy, with retention of CCR7 expression on CD4(+) T cells in the cerebrospinal fluid (CSF) despite decreased numbers of lymphocytes and decreased expression of CCR7 on CD4(+) T cells in the blood. These data suggest that fingolimod may cause differential effects on the CSF and blood lymphocytes of patients with MS during the initial months of therapy.

View Article and Find Full Text PDF

Objective: Neuromyelitis optica spectrum disorder (NMOsd) is an inflammatory and demyelinating syndrome characterized by optic neuritis and myelitis. Several magnetization transfer magnetic resonance imaging (MRI) studies have revealed abnormalities in normal-appearing gray matter in NMOsd. The aim of this study is to elucidate the characteristics and pathogenesis of cognitive impairment and neurodegeneration in NMOsd brains.

View Article and Find Full Text PDF