Publications by authors named "Akiko Wakamoto"

Background: The importance of visual sense in Hymenopteran social behavior is suggested by the existence of a Hymenopteran insect-specific neural circuit related to visual processing and the fact that worker honeybee brain changes morphologically according to its foraging experience. To analyze molecular and neural bases that underlie the visual abilities of the honeybees, we used a cDNA microarray to search for gene(s) expressed in a neural cell-type preferential manner in a visual center of the honeybee brain, the optic lobes (OLs).

Methodology/principal Findings: Expression analysis of candidate genes using in situ hybridization revealed two genes expressed in a neural cell-type preferential manner in the OLs.

View Article and Find Full Text PDF

We previously identified a novel insect picorna-like virus, termed Kakugo virus (KV), obtained from the brains of aggressive honeybee worker bees that had counterattacked giant hornets. Here we examined the tissue distribution of KV and alterations of gene expression profiles in the brains of KV-infected worker bees to analyze possible effects of KV infection on honeybee neural and physiological states. By use of in situ hybridization, KV was broadly detected in the brains of the naturally KV-infected worker bees.

View Article and Find Full Text PDF

We used a cDNA microarray to identify genes expressed in a caste (worker)- and division of labor (nurse bees or foragers)-dependent manner in the honeybee brain. Among the identified genes, one encoded a putative orphan receptor (HR38) homologue that mediates ecdysteroid-signaling. Real-time reverse transcription-polymerase chain reaction indicated that expression of this gene is higher in forager brains, as compared to nurse bees and queens.

View Article and Find Full Text PDF

We have developed an integrated database that is specialized for the study of imprinted disease genes. The database contains novel candidate imprinted genes identified by the RIKEN full-length mouse cDNA microarray study, information on validated single nucleotide polymorphisms (SNPs) to confirm imprinting using reciprocal mouse crosses and the predicted physical position of imprinting-related disease loci in the mouse and human genomes. It has two user-friendly search interfaces: the SNP-central view (MuSCAT: MoUse SNP CATalog) and the candidate gene-central view (CITE: Candidate Imprinted Transcripts by Expression).

View Article and Find Full Text PDF