Since we introduced cultured dorsal root ganglia (DRG) neurons from streptozotocin (STZ)-induced diabetic mice as "an in vitro model to study diabetic neuropathy" (Sotelo et al., 1991), more than 30 papers have been devoted to the study of diabetic neuropathy with culture systems of neurons and Schwann cells derived from adult animals. So far, methods for dissociated cell culture of peripheral neurons (mainly DRG neurons) and Schwann cells, and for explant culture of peripheral ganglia and retinas have been applied to diabetic animals or patients.
View Article and Find Full Text PDFObjective: The present study was conducted to clarify the effects of ultra-marathon (ultra long-term aerobic exercise in which people run long distances) on the brain; examine the issue of central fatigue; verify the serotonin hypothesis of exercise-induced brain fatigue, and ascertain relationships between central fatigue and oxidative stress.
Methods: Subjects consisted of 15 individuals (12 men, 3 women) who ran continuously for 24 h. Mean age was 44 +/- 9 years (range, 31 approximately 64 years).
Invest Ophthalmol Vis Sci
September 2005
Purpose: To investigate the effects of lysosomal storage on the morphologic appearance and the neurite outgrowth capability of the retina in a mouse model of G(M2) gangliosidosis (Sandhoff disease).
Methods: Histopathologic appearances of retinas in Sandhoff (SD) mice at 3 and 4 months of age were examined by light and electron microscopy. Retinas of SD mice and wild-type (WT) mice at 1, 2, and 4 months of age were cultured in collagen gel in the presence or absence of brain-derived neurotrophic factor (BDNF), and neurite outgrowth was examined.
We recently confirmed that oxidized galectin-1 is a novel factor enhancing axonal growth in peripheral nerves after axotomy, but the process of extracellular release and oxidization of endogenous galectin-1 in the injured nervous tissue remains unknown. In the present study, we examined the distribution of galectin-1 in adult rat dorsal root ganglia (DRG) in vivo and in vitro. By RT-PCR analysis and in situ hybridization histochemistry, galectin-1 mRNA was detected in both DRG neurons and non-neuronal cells.
View Article and Find Full Text PDFPhosphacan (PC) and neurocan (NC) are major chondroitin sulfate proteoglycans (CS-PGs) in nervous tissue and are involved in the modulation of cell adhesion and neurite outgrowth during neural development and regeneration. In the present study, we examined the effects of PC and NC on the attachment and neurite extension of adult rat dorsal root ganglion (DRG) neurons in vitro. Treatment with PC and NC on poly-L-lysine (PL) significantly impaired both neuronal attachment and neurite extension in a concentration-dependent manner (10 microg/ml > 1 microg/ml >> 0.
View Article and Find Full Text PDFWe examined the effects of diabetes on the morphological features and regenerative capabilities of adult mouse nodose ganglia (NG) and dorsal root ganglia (DRG). By light and electron microscopy, no apoptotic cell death was detected in the ganglia obtained from either streptozotocin (STZ)-induced diabetic or normal C57BL/6J mice in vivo. Neurite regeneration from transected nerve terminals of NG and DRG explants in culture at normal (10 mM) and high (30 mM) glucose concentrations was significantly enhanced in the diabetic mice.
View Article and Find Full Text PDFN-syndecan, a membrane-bound heparan sulphate proteoglycan, is abundantly present in the developing nervous system and thought to play important roles in the neurite outgrowth. In the present study, we examined the distribution of N-syndecan in the migratory route from the rat olfactory placode using immunohistochemistry and in situ hybridization. At embryonic day 15, both heparan sulphate and N-syndecan immunoreactivities were localized in and around the migrating cell clusters, which contained luteinizing hormone-releasing hormone (LHRH) and calbindin D-28k.
View Article and Find Full Text PDF