Publications by authors named "Akiko Ohki"

This study aimed to evaluate the reliability of apparent diffusion coefficient (ADC) values generated with two-dimensional turbo gradient- and spin-echo with BLADE trajectory diffusion-weighted imaging (TGSE-BLADE-DWI) sequence using a breast diffusion phantom. TGSE-BLADE-DWI and single-shot spin-echo echo-planar imaging (SS-EPI-DWI) were performed using a 3.0 T magnetic resonance imaging scanner.

View Article and Find Full Text PDF

This study aimed to evaluate tumor changes due to chemotherapy with temozolomide (TMZ) in terms of quantitative values measured by APT imaging and NODDI. We performed TMZ treatment (administered orally by gavage to the TMZ-40 mg and TMZ-60 mg groups) on 7-week-old male Wistar rats with rat glioma C6 implanted in the right brain. TWI, APT imaging, diffusion tensor imaging (DTI), and NODDI were performed on days 7 and 14 after implantation using 7T-MRI, and the calculated quantitative values were statistically compared.

View Article and Find Full Text PDF

Purpose: We measured the T and T values the liver of acute liver inflammation model mice administered carbon tetrachloride (CCl) after 3 days and 6 days after dispensed, and we compared and examined whether each relaxation time can be used for detect acute liver inflammation.

Methods: To create an acute liver inflammation model, a mixture of 0.2 ml / 100 g of CCl with an equal amount of Sesame Oil was administered once intraperitoneally to C57BL / 6JJmsSlc mice (n = 15).

View Article and Find Full Text PDF

Cell tracking with magnetic resonance imaging (MRI) is important for evaluating the biodistribution of transplanted cells. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) have emerged as a promising therapeutic tool in regenerative medicine. We examined the UC-MSCs labeled with superparamagnetic (SPIO) and ultrasmall superparamagnetic iron oxide (USPIO) in terms of cell functioning and imaging efficiency in vitro and in vivo.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the effect of chemical exchange saturation transfer (CEST) on the ischemic regions in hypoxic-ischemic encephalopathy (HIE) in comparison with diffusion-weighted imaging (DWI) and magnetic resonance spectroscopy (MRS) using a 7T-MRI.

Methods: We used neonatal rats (n = 8), aged 8 days, to clarify the progression of HIE. The rat model of HIE was developed by ligating and severing the left common carotid artery, followed by 45 minutes of recovery, and 60 minutes of hypoxia (8% O/92% N; 34°C).

View Article and Find Full Text PDF

Purpose: To evaluate the utility of neurite orientation dispersion and density imaging (NODDI) for longitudinally assessing neonatal hypoxic-ischemic (HI) encephalopathy severity with 7.0 T magnetic resonance imaging.

Methods: Thirteen 8-day-old Wistar rats underwent unilateral ligation of the left common carotid artery followed by mild (1 h; n = 6) or severe (2 h; n = 7) hypoxic exposure (8% O, 34 °C).

View Article and Find Full Text PDF

Purpose: To establish a brain proton magnetic resonance spectroscopy (H MRS) experimental system using a mouse model of Leigh syndrome for monitoring intracerebral lactate levels as a biomarker of mitochondrial disease progression.

Materials And Methods: Brain H MRS was performed in the Ndufs4 homozygous knockout (KO) mice, a mouse model of Leigh syndrome, and control mice on a horizontal 7.0-T magnetic resonance imaging system at age 5-9 weeks.

View Article and Find Full Text PDF

This study aimed to use chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) at 7T-MRI for early detection of intracerebral lactate in a mitochondrial disease model without brain lesions. We considered Ndufs4-knockout (KO) mice as Leigh syndrome models and wild-type (WT) mice as control mice. Brain MRI and H-MRS were performed.

View Article and Find Full Text PDF

Objective: Nitrogen-containing bisphosphonates (NBPs), the first-choice drugs for diseases that cause enhanced bone resorption, may injure jawbones and gastrointestinal tissues. In rodents, NBPs cause necrosis at injection sites. Bisphosphonates accumulate within bones, especially where there is inflammation.

View Article and Find Full Text PDF