Cryptococcus neoformans and Cryptococcus gattii are fungal pathogens that cause diseases in humans. Cryptococcal species mainly enter the body by inhalation and in most cases are eliminated by host defense mechanisms. Some cases, however, progress to pneumonia and subsequent dissemination of the infection to the central nervous system (CNS), leading to meningoencephalitis.
View Article and Find Full Text PDFAerococcus urinae is a endocarditis rare causative organism with low virulene. We report an A. urinae endocarditis case treated by aortic valve replacement.
View Article and Find Full Text PDFCryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis in immunocompromised patients. Recently, we reported that Toll-like receptor 9 (TLR9) is involved in host defense against C. neoformans: specifically, it detects the pathogen's DNA.
View Article and Find Full Text PDFDNA from Cryptococcus neoformans activates bone marrow-derived dendritic cells (BM-DCs) in a TLR9-dependent manner. In this study, we examined the effect of the culture supernatants of C. neoformans on the activation of BM-DCs caused by its own DNA.
View Article and Find Full Text PDFInfective endocarditis (IE) is traditionally diagnosed by microbiological analysis of blood cultures, following which therapeutic antibiotics are chosen based on antimicrobial sensitivity tests. However, such conventional techniques do not always lead to an accurate etiological diagnosis. Recently, PCR analysis of the 16S rRNA gene has been employed to identify organisms isolated from excised heart valves.
View Article and Find Full Text PDFInvariant NK T (iNKT) cells are known to play a critical role in the regulation of inflammatory responses in various clinical settings. In the present study, we assessed the contribution of iNKT cells to the development of acute lung injury (ALI), which was caused by intra-tracheal administration of LPS. Jα18 gene-disrupted mice lacking these cells underwent neutrophilic inflammatory responses in lungs at an equivalent level as control mice.
View Article and Find Full Text PDFThe mechanism by which host cells recognize Cordyceps sinensis, a Chinese herbal medicine that is known to exhibit immunomodulating activity, remains poorly understood. In this study, we investigated whether the DNA of this fungus could activate mouse bone marrow-derived dendritic cells (BM-DCs). Upon stimulation with C.
View Article and Find Full Text PDFIn this study, we elucidated the role of tumor necrosis factor (TNF)-alpha in the host defense to pulmonary infection with Streptococcus pneumoniae and defined the cellular source of this cytokine at an early stage of infection. Administration of anti-TNF-alpha monoclonal antibody (mAb) resulted in the reduced accumulation of neutrophils in bronchoalveolar lavage fluids (BALFs) and severe exacerbation of this infection. In a flow cytometric analysis, the intracellular expression of TNF-alpha was detected in Gr-1(bright+) and Gr-1(dull+) cells during the time intervals postinfection, and F4/80(+) cells expressed intracellular TNF-alpha before Gr-1(dull+) cells appeared.
View Article and Find Full Text PDFThe innate immune system of humans recognizes the human pathogenic fungus Candida albicans via sugar polymers present in the cell wall, such as mannan and beta-glucan. Here, we examined whether nucleic acids from C. albicans activate dendritic cells.
View Article and Find Full Text PDFLeukocidin (Luk), an exotoxin of Staphylococcus aureus consisting of LukF and LukS, is a hetero-oligomeric pore-forming cytolytic toxin toward human and rabbit polymorphonuclear leukocytes. However, it is uncertain how Luk affects the host immune response. In the present study, we investigated whether Luk has the ability to stimulate mouse bone marrow-derived myeloid dendritic cells (BM-DCs).
View Article and Find Full Text PDFBackground: Human T-cell leukemia virus type I (HTLV-I) is associated with pulmonary diseases, characterized by bronchoalveolar lymphocytosis, which correlates with HTLV-I proviral DNA in carriers. HTLV-I Tax seems to be involved in the development of such pulmonary diseases through the local production of inflammatory cytokines and chemokines in T cells. However, little is known about induction of these genes by HTLV-I infection in lung epithelial cells.
View Article and Find Full Text PDFThe present study was designed to elucidate the role of TLR2, TLR4 and dectin-1 in the production of IL-12p40 by bone marrow-derived dendritic cells (BM-DCs) infected with Penicillium marneffei. IL-12p40 production was almost completely abrogated in BM-DCs from TLR2 gene-knockout (KO) and MyD88KO mice, but not from TLR4-defective C3H/HeJ mice compared to those from control mice. Furthermore, BM-DCs from dectin-1KO mice faintly produced IL-12p40 upon stimulation with this fungus.
View Article and Find Full Text PDFCryptococcus neoformans is eradicated by macrophages via production of NO. Unmethylated CpG-ODN protect mice from infection with this fungal pathogen by inducing IFN-gamma. The present study was designed to elucidate the effect of C.
View Article and Find Full Text PDFThe mechanism of host cell recognition of Cryptococcus neoformans, an opportunistic fungal pathogen in immunocompromised patients, remains poorly understood. In the present study, we asked whether the DNA of this yeast activates mouse bone marrow-derived myeloid dendritic cells (BM-DCs). BM-DCs released IL-12p40 and expressed CD40 upon stimulation with cryptococcal DNA, and the response was abolished by treatment with DNase, but not with RNase.
View Article and Find Full Text PDFDectin-1 is known as a sole receptor for beta-glucan, a major cell wall component of fungal microorganisms. In the current study, we examined the role of this molecule in the host defense to Cryptococcus neoformans, an opportunistic fungal pathogen in AIDS patients. There was no significant difference in the clinical course and cytokine production between dectin-1 gene-deficient and control mice.
View Article and Find Full Text PDFCryptococcal meningoencephalitis is a life-threatening infectious disease in immunocompromised patients. Unmethylated CpG-oligodeoxynucleotides (CpG-ODN) protects hosts in a mouse model. In the present study, we tested the adjuvant effect of CpG-ODN in anti-fungal chemotherapy.
View Article and Find Full Text PDFMitotic arrest-deficient protein 1 (MAD1) is a component of the mitotic spindle assembly checkpoint. We have created a knockout mouse model to examine the physiologic consequence of reduced MAD1 function. Mad1(+/-) mice were successfully generated, but repeated paired mating of Mad1(+/-) with Mad1(+/-) mice failed to produce a single Mad1(-/-) animal, suggesting that the latter genotype is embryonic lethal.
View Article and Find Full Text PDFThe present study was designed to elucidate the role of Toll-like receptor (TLR) 2 and TLR4 in the host response to Cryptococcus neoformans. Both TLR2 knockout (KO) and TLR4KO mice produced interleukin-1beta (IL-1beta), IL-6, IL-12p40 and tumor necrosis factor-alpha (TNF-alpha) in sera and cleared this fungal pathogen from infected lungs at a comparable level to control littermate (LM) mice. Synthesis of these cytokines was not significantly different in the lungs of these KO mice and LM mice, although IL-1beta, IL-6 and IL-12p40 tended to be lower in TLR2KO, but not TLR4KO, mice than in controls.
View Article and Find Full Text PDFHuman T cell leukemia virus type-1 (HTLV-1) is an oncogenic retrovirus etiologically causal of adult T cell leukemia. The virus encodes a Tax oncoprotein that functions in transcriptional regulation, cell cycle control, and transformation. Because adult T cell leukemia like many other human cancers is a disease of genomic instability with frequent gains and losses of chromosomes, to understand this disease it is important to comprehend how HTLV-1 engenders aneuploidy in host cells.
View Article and Find Full Text PDFThe human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein can repress the transcriptional activity of the tumor suppressor protein p53. However, it remains controversial whether Tax requires NF-kappaB factors/activity and/or p300/CBP in order to inactivate p53 function. To address this issue, we have investigated Tax's effect on p53's transcriptional activation in IkappaB-kinase-deficient mouse embryonic fibroblasts (MEFs); some of which are entirely silent for Tax-induced NF-kappaB activity.
View Article and Find Full Text PDFHuman T-cell leukemia virus type 1 (HTLV-1) encodes a 40-kDa Tax phosphoprotein. Tax is a transcriptional activator which modulates expression of the viral long terminal repeat and transcription of many cellular genes. Because Tax is a critical HTLV-1 factor which mediates viral transformation of T cells during the genesis of adult T-cell leukemia, it is important to understand the processes which can activate or inactivate Tax function.
View Article and Find Full Text PDFCorrect endoproteolytic maturation of gp160 is essential for the infectivity of human immunodeficiency virus type 1. This processing of human immunodeficiency virus-1 envelope protein, gp160, into gp120 and gp41 has been attributed to the activity of the cellular subtilisin-like proprotein convertase furin. The prototypic furin recognition cleavage site is Arg-X-Arg/Lys-Arg.
View Article and Find Full Text PDF