Publications by authors named "Akiko Kita"

The biosynthesis pathways of coenzyme A (CoA) in most archaea involve several unique enzymes including dephospho-CoA kinase (DPCK) that converts dephospho-CoA to CoA in the final step of CoA biosynthesis in all domains of life. The archaeal DPCK is unrelated to the analogous bacterial and eukaryotic enzymes and shows no significant sequence similarity to any proteins with known structures. Unusually, the archaeal DPCK utilizes GTP as the phosphate donor although the analogous bacterial and eukaryotic enzymes are ATP-dependent kinases.

View Article and Find Full Text PDF

Amyloid β-protein (Aβ) oligomers are involved in the early stages of Alzheimer's disease (AD) and antibodies against these toxic oligomers could be useful for accurate diagnosis of AD. We identified the toxic conformer of Aβ42 with a turn at positions 22/23, which has a propensity to form toxic oligomers. The antibody 24B3, developed by immunization of a toxic conformer surrogate E22P-Aβ9-35 in mice, was found to be useful for AD diagnosis using human cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

The hydrogen/deuterium (H/D) exchange of main-chain amide hydrogens in the protein that denatured and refolded in deuterated solvent is considered to contain the traces of hydrogen bond cleavages or the exposure to solvent of the buried part of the protein during the denaturing and refolding (denaturing/refolding) processes. Here, we report the H/D exchange behaviors in hen egg-white lysozymes denatured under acidic conditions, basic conditions, and thermal conditions and then refolded in deuterated solvents, using crystallographic methods. The results indicate that the space containing the Trp28 side chain was hardly exposed to the solvent in acidic conditions, but exposed under basic or heated conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the characteristics of amyloid β (Aβ) oligomers, which are toxic species involved in Alzheimer's disease (AD) but are difficult to analyze due to their instability.
  • Researchers developed a modified version of Aβ42 (SS-Aβ42) that forms stable oligomers and proved to be more cytotoxic in cell cultures than its wild-type counterpart and a more aggregative mutant.
  • An antibody, TxCo-1, was created to specifically target the toxic form of SS-Aβ42, and its use revealed that this oligomeric form is associated with brain structures in Alzheimer’s patients, providing insights into its role in AD pathology.
View Article and Find Full Text PDF

Neutron diffraction studies of hydrogen/deuterium-exchanged hen egg-white lysozyme were performed by a joint X-ray and neutron refinement to elucidate the hydrogen/deuterium exchange behavior. Large crystals for neutron work, consisting of molecules that were exchanged before crystallization, were obtained by repeatedly adding protein solution to the crystal batch using deuterated precipitant reagent. There are differences in hydrogen/deuterium exchange behavior compared with previous crystallographic or NMR studies, which could be due to intermolecular interactions in the crystal or to different lengths of exchange period.

View Article and Find Full Text PDF

The coenzyme A biosynthesis pathways in most archaea involve two unique enzymes, pantoate kinase and phosphopantothenate synthetase, to convert pantoate to 4'-phosphopantothenate. Here, we report the first crystal structure of pantoate kinase from the hyperthermophilic archaeon, Thermococcus kodakarensis and its complex with ATP and a magnesium ion. The electron density for the adenosine moiety of ATP was very weak, which most likely relates to its broad nucleotide specificity.

View Article and Find Full Text PDF

Local anesthetics (LAs) inhibit endoplasmic reticulum-associated protein degradation, however the mechanisms remain elusive. Here, we show that the clinically used LAs pilsicainide and lidocaine bind directly to the 20S proteasome and inhibit its activity. Molecular dynamic calculation indicated that these LAs were bound to the β5 subunit of the 20S proteasome, and not to the other active subunits, β1 and β2.

View Article and Find Full Text PDF

A symbiosis-related lectin, SLL-2, from the octocoral Sinularia lochmodes, distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellates into a nonmotile (coccoid) symbiotic state. SLL-2 binds to the sugar chain of the molecule similar to Forssman antigen pentasaccharide (GalNAcα1-3GalNAcβ1-3 Galα1-4 Galβ1-4Glc) on the surface of microalgae with high affinity.

View Article and Find Full Text PDF

Precise protein structure determination provides significant information on life science research, although high-quality crystals are not easily obtained. We developed a system for producing high-quality protein crystals with high throughput. Using this system, gravity-controlled crystallization are made possible by a magnetic microgravity environment.

View Article and Find Full Text PDF

A method of hydrogen/deuterium (H/D) exchange with an unfolding-refolding process has been applied to hen egg-white lysozyme (HWL), and accurate evaluation of its deuteration was carried out by time-of-flight mass spectroscopy. Neutron crystallography requires a suitable crystal with enough deuterium exchanged in the protein to decrease incoherent scattering from hydrogens. It is very expensive to prepare a fully deuterated protein, and therefore a simple H/D exchange technique is desirable for this purpose.

View Article and Find Full Text PDF

The X-ray crystal structure of a salicylate hydroxylase from Pseudomonas putida S-1 complexed with coenzyme FAD has been determined to a resolution of 2.5 Å. Structural conservation with p- or m-hydroxybenzoate hydroxylase is very good throughout the topology, despite a low amino sequence identity of 20-40% between these three hydroxylases.

View Article and Find Full Text PDF

D-Galactose-binding lectin from the octocoral, Sinularia lochmodes (SLL-2), distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellate into a non-motile (coccoid) symbiotic state. SLL-2 binds with high affinity to the Forssman antigen (N-acetylgalactosamine(GalNAc)α1-3GalNAcβ1-3Galα1-4Galβ1-4Glc-ceramide), and the presence of Forssman antigen-like sugar on the surface of Symbiodinium CS-156 cells was previously confirmed.

View Article and Find Full Text PDF

The quaternary structures of invertebrate haemoglobins (Hbs) are quite different from those of vertebrate Hbs. The extracellular giant Hbs of molecular masses of about 400 and 3600 kDa are composed of a dome-shaped dodecameric subassembly which consists of four individual globin subunits. Several crystal structures of 400 kDa Hbs from annelids have been reported, including structures in oxygenated and partially unliganded states, but the structure of the fully deoxygenated state has not been reported.

View Article and Find Full Text PDF

Bacteria/eukaryotes share a common pathway for coenzyme A biosynthesis which involves two enzymes to convert pantoate to 4'-phosphopantothenate. These two enzymes are absent in almost all archaea. Recently, it was reported that two novel enzymes, pantoate kinase, and phosphopantothenate synthetase (PPS), are responsible for this conversion in archaea.

View Article and Find Full Text PDF

We have previously reported that the majority of the archaea utilize a novel pathway for coenzyme A biosynthesis (CoA). Bacteria/eukaryotes commonly use pantothenate synthetase and pantothenate kinase to convert pantoate to 4'-phosphopantothenate. However, in the hyperthermophilic archaeon Thermococcus kodakarensis, two novel enzymes specific to the archaea, pantoate kinase and phosphopantothenate synthetase, are responsible for this conversion.

View Article and Find Full Text PDF

Recent structure analyses of αB-crystallin have proposed some models of the N-terminal domain and the manner of oligomerization, whereas the effects of the significantly high content of Pro residues at the N-terminal domain remain unclear. We report the properties of a novel P39R mutant of αB-crystallin. The content of α-helix was increased, and the molecular size of the P39R mutant was larger than that of wild-type αB-crystallin.

View Article and Find Full Text PDF

Purpose: The aspartyl (Asp) residues 58 and 151 in αA-crystallin, and Asp36 and Asp62 in αB-crystallin in human lenses are known to be highly isomerized with aging. We investigate structural environments of these isomerizable aspartyl residues in α-crystallins of human lenses.

Methods: To perform limited proteolysis experiments of purified human αA- and αB-crystallins, endoproteinase Asp-N (EC 3.

View Article and Find Full Text PDF

An 83-year-old man was diagnosed with adult-onset Still's disease (AOSD) based on clinical and laboratory findings. However, glucocorticoid had little effect. Epstein-Barr virus (EBV)-DNA was detected in peripheral blood, and autopsy findings confirmed a diagnosis of chronic active EBV infection (CAEBV).

View Article and Find Full Text PDF

Soybean seeds contain substantial amount of diverse triterpenoid saponins that influence the seed quality, although little is known about the physiologic functions of saponins in plants. We now describe the modification of saponin biosynthesis by RNA interference (RNAi)-mediated gene silencing targeted to β-amyrin synthase, a key enzyme in the synthesis of a common aglycon of soybean saponins. We identified two putative β-amyrin synthase genes in soybean that manifested distinct expression patterns with regard to developmental stage and tissue specificity.

View Article and Find Full Text PDF

Novokinin (RPLKPW), LPYPR, and rubiscolin (YPLDLF) are bioactive peptides with respective hypotensive, hypocholesterolemic, and memory-enhancing activities. We generated transgenic soybean lines that expressed modified forms of the alpha' subunit of seed storage protein beta-conglycinin containing tandem repeats of these bioactive peptides. The modified alpha' subunits constituted up to 0.

View Article and Find Full Text PDF

The oxygen binding properties of extracellular giant hemoglobins (Hbs) in some annelids exhibit features significantly different from those of vertebrate tetrameric Hbs. Annelid giant Hbs show cooperative oxygen binding properties in the presence of inorganic cations, while the cooperativities of vertebrate Hbs are enhanced by small organic anions or chloride ions. To elucidate the structural basis for the cation-mediated cooperative mechanisms of these giant Hbs, we determined the crystal structures of Ca2+- and Mg2+-bound Hbs from Oligobrachia mashikoi at 1.

View Article and Find Full Text PDF

Recent crystallographic studies have revealed the structures of some invertebrate extracellular giant hemoglobins of 3,600 kDa or 400 kDa and their common quaternary structure of dodecameric subassembly composed of four kinds of globin subunits (A1, A2, B1, and B2). These results have provided insight into the mechanisms of their unique functional properties of oxygen binding and sulfide binding. All of these structures were solved with oxygenated or CO-liganded forms at low or moderate resolutions.

View Article and Find Full Text PDF

The [2Fe-2S] transcription factor SoxR, a member of the MerR family, functions as a bacterial sensor of oxidative stress such as superoxide and nitric oxide. SoxR is activated by reversible one-electron oxidation of the [2Fe-2S] cluster and then enhances the production of various antioxidant proteins through the soxRS regulon. In the active state, SoxR and other MerR family proteins activate transcription from unique promoters, which have a long 19- or 20-bp spacer between the -35 and -10 operator elements, by untwisting the promoter DNA.

View Article and Find Full Text PDF