Publications by authors named "Akiko Hirao"

Restricting feeding to daytime can entrain circadian clocks in peripheral organs of rodents, and nutrients that rapidly increase the blood glucose level are suitable for inducing entrainment. However, dietetic issues, for example, whether or not the diet comprises heated food, have not been fully explored. We therefore hypothesized that rapidly digested starch causes stronger entrainment than slowly digested starch.

View Article and Find Full Text PDF

Peripheral circadian clocks in mammals are strongly entrained by light-dark and eating cycles. Their physiological functions are maintained by the synchronization of the phase of organs via clock gene expression patterns. However, little is known about the adaptation of peripheral clocks to the timing of multiple daily meals.

View Article and Find Full Text PDF

Background: Recent studies on humans and rodents have suggested that the timing of food intake plays an important role in circadian regulation and metabolic health. Consumption of high-fat foods during the inactive period or at the end of the awake period results in weight gain and metabolic syndrome in rodents. However, the distinct effects of breakfast size and the breakfast/dinner size ratio on metabolic health have not yet been fully examined in mice.

View Article and Find Full Text PDF

The mammalian circadian system is comprised of a central clock in the suprachiasmatic nucleus (SCN) and a network of peripheral oscillators located in all of the major organ systems. The SCN is traditionally thought to be positioned at the top of the hierarchy, with SCN lesions resulting in an arrhythmic organism. However, recent work has demonstrated that the SCN and peripheral tissues generate independent circadian oscillations in Per1 clock gene expression in vitro.

View Article and Find Full Text PDF

Comprehensive gene expression profiling in mice in response to the inhalation of sevoflurane has revealed that circadian clock gene expression is affected strongly in the liver, heart, lung, and kidney, in this order, but moderately in the spleen and slightly in the brain. Therefore, we examined whether the administration of general anesthetics at different times of the day induces phase shifts of the liver clock in Per2::Luciferase knockin mice. One to 4 days of intraperitoneal injection of 2,2,2-tribromoethanol (240 mg/kg, anesthetic time 60 min) or 2,2,2-trichloroethanol (240 mg/kg, 60 min), common anesthetics in veterinary surgery, caused phase delays when injected during the daytime and phase advances when injected during the nighttime.

View Article and Find Full Text PDF

To determine the effects of a [6]-gingerol analogue (6G), a major chemical component of the ginger rhizome, and its stable analogue after digestion in simulated gastric fluid, aza-[6]-gingerol (A6G), on diet-induced body fat accumulation, we synthesized 6G and A6G. Mice were fed either a control regular rodent chow, a high-fat diet (HFD), or a HFD supplemented with 6G and A6G. Magnetic resonance imaging adiposity parameters of the 6G- and A6G-treated mice were compared with those of control mice.

View Article and Find Full Text PDF

The mammalian circadian clock is known to be entrained by both a daily light-dark cycle and daily feeding cycle. However, the mechanisms of feeding-induced entrainment are not as fully understood as those of light entrainment. To elucidate the first step of entrainment of the liver clock, we identified the circadian clock gene(s) that show both phase advance and acute change of gene expression during the early term of the daytime refeeding schedule in mice.

View Article and Find Full Text PDF

Although the circadian liver clock is entrained by the feeding cycle, factors such as food volume and starvation interval are poorly understood. Per2::Luc knock-in mice were given two meals per day with different food volume sizes and/or with different intervals of starvation between two mealtimes with the total food volume per day fixed at 3.6 g (80 food pellets, ∼75% of free feeding) per mouse.

View Article and Find Full Text PDF

Daily restricted feeding entrains the circadian rhythm of mouse clock gene expression in the central nervous system, excluding the suprachiasmatic nucleus (SCN), as well as in the peripheral tissues such as the liver, lung, and heart. In addition to entrainment of the clock genes, daily restricted feeding induces a locomotor activity increase 2-3h before the restricted feeding time initiates. The increase in activity is called the food-anticipatory activity (FAA).

View Article and Find Full Text PDF

Patients who need home care are often old, of delicate health, and take many different medications. In order to take these medicines properly, not only the patient him/herself but also their family, the helper, and the visiting nurse must have the correct information about them. Since home care is typically carried out by several medical professionals from different fields, we sent out questionnaires to pharmacists and nurse care professionals.

View Article and Find Full Text PDF

Restricted feeding induces anticipatory activity rhythm and also entrains the peripheral circadian clocks, although the underlying brain mechanisms have not been fully elucidated. The dorsomedial hypothalamus (DMH) has been implicated in the regulation of restricted feeding-induced anticipatory activity rhythms (FAA), but the role of the DMH in restricted feeding- induced entrainment of peripheral circadian clocks is still unknown. In the present study, the role of the DMH in entrainment of the peripheral circadian clock was examined using Per2::luciferase knock-in mice.

View Article and Find Full Text PDF

Background: The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered.

View Article and Find Full Text PDF

Anxiety disorders, caused by continuous or acute stress or fear, have been highly prevailing psychiatric disorders. For the acute treatment of the disorders, benzodiazepines have been widely used despite having liabilities that limit their utility. Alternatively, endogenous nociceptin/orphanin FQ and nociceptin/orphanin FQ peptide receptor (or opioid-receptor-like-1 receptor) have important roles in the integration of emotional components, e.

View Article and Find Full Text PDF

An endogenous heptadecapeptide, nociceptin/orphanin FQ (N/OFQ), and a G-protein-coupled receptor, N/OFQ peptide (NOP) receptor [or opioid-receptor-like-1 (ORL1) receptor], have been described in terms of its structure, distribution, and pharmacology. Thus, the N/OFQ and NOP receptor are located in the central nervous systems in humans, primates, and rodents, and are involved in the integration of the emotional components in the brain; e.g.

View Article and Find Full Text PDF

Inhibition of H(+),K(+)-ATPase is accepted as the most effective way of controlling gastric acid secretion. However, current acid suppressant therapy for gastroesophageal reflux disease, using histamine H(2) receptor antagonists and proton pump inhibitors, does not fully meet the needs of all patients because of their mechanism of action. This study sought to characterize the in vitro and in vivo pharmacology of a novel acid pump antagonist, N-(2-Hydroxyethyl)-N,2-dimethyl-8-{[(4R)-5-methyl-3,4-dihydro-2H-chromen-4-yl]amino}imidazo[1,2-a]pyridine-6-carboxamide (PF-03716556), and to compare it with other acid suppressants.

View Article and Find Full Text PDF

Aims: Denudation and regeneration of the vascular endothelium are important in the pathogenesis of atherosclerosis. The aim of this study is to clarify the mechanisms of functional alterations in remodelled arteries following endothelial injury.

Methods And Results: Non-mechanical endothelial injury was induced by 540-nm light irradiation of rose Bengal in femoral arteries of Wistar rats.

View Article and Find Full Text PDF

Nociceptin/orphanin FQ peptide (NOP)-receptor agonists have been shown to produce anxiolytic-like effects in rodents subjected to various behavioral assays. Recently, we developed a new nonpeptide agonist of the NOP receptor, 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole (MCOPPB), as an anxiolytic agent. MCOPPB has a high affinity for the human NOP receptor (pKi = 10.

View Article and Find Full Text PDF

We have characterized the pharmacological properties of the novel nociceptin/orphanin FQ peptide receptor (NOP receptor) agonist, 2-(3,5-dimethylpiperazin-1-yl)-1-[1-(1-methylcyclooctyl)piperidin-4-yl]-1H-benzimidazole (PCPB). PCPB bound to the NOP receptor in mouse brain membranes (Ki=0.12 nM) and to recombinant human NOP receptor (Ki=2.

View Article and Find Full Text PDF

In the development of the somite, signals from neighboring tissues have been suggested to play critical roles. We have found that when interaction between the ectoderm and the somite is blocked by inserting a piece of polyethylene terephatalate film between them in 2-day-chicken embryo, one of the derivatives of somite, the distal rib, did not form. We examined somite development after the operation, to know the correlation between somite development and distal rib formation.

View Article and Find Full Text PDF

The Dnmt3b gene encodes a de novo DNA methyltransferase that is essential for normal mouse development. It is highly expressed in early embryos and embryonic stem (ES) cells but downregulated in most adult somatic tissues. To gain insight into the regulation of Dnmt3b, we have isolated a mouse genomic bacterial artificial chromosome clone that contains the Dnmt3b gene.

View Article and Find Full Text PDF

Photoinduced electron transfer between fullerenes (C60 and C70) and various aromatic amines (AA's) in the absence and presence of a viologen dication has been studied by the transient absorption method in the visible and near-IR regions. Electron-transfer takes place from AA's to the triplet states of fullerenes (3C60* and 3C70*) giving the anion radicals of fullerenes (C60*- and C70*-) and the radical cations of AA's (AA*+). The rate constants and efficiencies of electron transfer are quite high, because of the high electron-donor abilities of AA's as their low oxidation potentials indicate.

View Article and Find Full Text PDF