This study investigated whether machine learning (ML) has better predictive accuracy than logistic regression analysis (LR) for gait independence at discharge in subacute stroke patients (n = 843) who could not walk independently at admission. We developed prediction models using LR and five ML algorithms-specifically, the decision tree (DT), support vector machine, artificial neural network, ensemble learning, and k-nearest neighbor methods. Functional Independence Measure sub-items were used to evaluate the ability to walk independently.
View Article and Find Full Text PDF