The development of reticular chemistry has enabled the construction of a large array of metal-organic frameworks (MOFs) with diverse net topologies and functions. However, dominating this class of materials are those built from discrete/finite secondary building units (SBUs), yet the designed synthesis of frameworks involving infinite rod-shaped SBUs remain underdeveloped. Here, by virtue of a global linker desymmetrization approach, we successfully targeted a novel Cu-MOF (Cu-ASY) incorporating infinite Cu-carboxylate rod SBUs with its structure determined by micro electron diffraction (MicroED) crystallography.
View Article and Find Full Text PDFDeveloping innovative porous solid sorbents for the capture and storage of toxic SO is crucial for energy-efficient transportation and subsequent processing. Nonetheless, the quest for high-performance SO sorbents, characterized by exceptional uptake capacity, minimal regeneration energy requirements, and outstanding recyclability under ambient conditions, remains a significant challenge. In this study, we present the design of a unique tertiary amine-embedded, pyrene-based quadripod-shaped ligand.
View Article and Find Full Text PDFThe ability to control photoinduced charge transfer within molecules represents a major challenge requiring precise control of the relative positioning and orientation of donor and acceptor groups. Here we show that such photoinduced charge transfer processes within homo- and hetero-rotaxanes can be controlled through organisation of the components of the mechanically interlocked molecules, introducing alternative pathways for electron donation. Specifically, studies of two rotaxanes are described: a homo[3]rotaxane, built from a perylenediimide diimidazolium rod that threads two pillar[5]arene macrocycles, and a hetero[4]rotaxane in which an additional bis(1,5-naphtho)-38-crown-10 (BN38C10) macrocycle encircles the central perylenediimide.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
December 2020
Structural characteristics of solid and liquid crystalline phases of 7OS5 (4-n-pentylphenyl-4'-n-heptyloxythiobenzoate), the achiral smectogenic mesogen with the shortest terminal carbon chain in the nOS5 homologous series, are studied by complementary methods. Simultaneously perfomed X-ray diffraction and differential scanning calorimetry occur to be a powerful tool to study metastable phases. The single crystal structure of a high-temperature phase, supercooled from the room temperature down to -183°C [orthorhombic crystal system; space group Pca2; a = 54.
View Article and Find Full Text PDFOrganic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field-effect transistors (FETs), and coherent (or band-like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p-type OSC SCs compatible with a printing technology have been used to achieve high-speed FETs; therefore, developments of n-type counterparts may be promising for realizing high-speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state-of-the-art, air-stable n-type OSC, PhC -BQQDI, by means of variable-temperature gated Hall effect measurements and X-ray single-crystal diffraction analyses in conjunction with band structure calculations, are reported.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2020
Mitogen-activated protein kinase kinase 4 (MAP2K4) plays a critical role in regulating the stress-activated protein kinase signaling cascade. A small angle X-ray scattering experiment, a powerful technique for analyzing a solution structure cleared from the structural artifacts due to crystal packing, provided the ensemble structures of human non-phosphorylated MAP2K4 in three states involving the apo form, the binary complex with an ATP analogue, and the ternary complex with the ATP analogue and substrate peptide. These ensemble structures provided more detailed mechanisms for regulating MAP2K4 in addition to those delineated only by the crystal structures in three states.
View Article and Find Full Text PDFThe structure determination of organic compounds is desirable for the development of medicines, aroma chemicals, and agricultural chemicals. However, the crystallization of organic compounds is often troublesome, because crystallization requires a relatively large quantity of high purity compounds and crystallization trials often need to be performed repetitively using different conditions. Some proteins are known to be able to bind to various organic compounds.
View Article and Find Full Text PDFPrinted and flexible electronics requires solution-processable organic semiconductors with a carrier mobility (μ) of ≈10 cm V s as well as high chemical and thermal durability. In this study, chryseno[2,1-:8,7-']dithiophene (ChDT) and its derivatives, which have a zigzag-elongated fused π-electronic core (π-core) and a peculiar highest occupied molecular orbital (HOMO) configuration, are reported as materials with conceptually new semiconducting π-cores. ChDT and its derivatives are prepared by a versatile synthetic procedure.
View Article and Find Full Text PDFproduces the botulinum neurotoxin (BoNT). Previously, we provided evidence for the "building-block" model of botulinum toxin complex (TC). In this model, a single BoNT is associated with a single nontoxic nonhemagglutinin (NTNHA), yielding M-TC; three HA-70 molecules are attached and form M-TC/HA-70, and one to three "arms" of the HA-33/HA-17 trimer (two HA-33 and one HA-17) further bind to M-TC/HA-70 via HA-17 and HA-70 binding, yielding one-, two-, and three-arm L-TC.
View Article and Find Full Text PDFTwo novel 11(9 → 7)-abeo-ergostane-type steroids, named pleurocins A (1) and B (2), a 13,14-seco-13,14-epoxy ergostane, named eringiacetal B (3), and an ergostane steroid (4) were isolated from the fruiting bodies of Pleurotus eryngii (Pleurotaceae). Their structures were determined by spectroscopic data and X-ray crystallography. A possible biogenesis pathway for 1-3 was also described.
View Article and Find Full Text PDFBxlE from Streptomyces thermoviolaceus OPC-520 is a xylo-oligosaccharide (mainly xylobiose)-binding protein that serves as the initial receptor for the bacterial ABC-type xylo-oligosaccharide transport system. To determine the ligand-binding mechanism of BxlE, X-ray structures of ligand-free (open form) and ligand (xylobiose)-bound (closed form) BxlE were determined at 1.85 Å resolution.
View Article and Find Full Text PDFDetailed conformational analyses of our previously reported cyclopropane-based peptidomimetics and conformational analysis-driven ligand optimization are described. Computational calculations and X-ray crystallography showed that the characteristic features of cyclopropane function effectively to constrain the molecular conformation in a three-dimensionally diverse manner. Subsequent principal component analysis revealed that the diversity covers the broad chemical space filled by peptide secondary structures in terms of both main-chain and side-chain conformations.
View Article and Find Full Text PDFClostridium botulinum produces a large toxin complex (L-TC) comprising botulinum neurotoxin associated with auxiliary nontoxic proteins. A complex of 33- and 17-kDa hemagglutinins (an HA-33/HA-17 trimer) enhances L-TC transport across the intestinal epithelial cell layer via binding HA-33 to a sugar on the cell surface. At least two subtypes of serotype C/D HA-33 exhibit differing preferences for the sugars sialic acid and galactose.
View Article and Find Full Text PDFTo analyse the electrocatalytic oxidation of carbon monoxide by Rh porphyrins, we isolated a CO-adduct of Rh octaethylporphyrin, and examined its properties and reactivity by IR, NMR, and X-ray crystallographic analyses. The results indicate that the CO adduct of Rh octaethylporphyrin is vulnerable to nucleophilic attack by H2O. The CO-adduct was easily oxidized by an electron acceptor (1,4-naphthoquinone) to generate CO2.
View Article and Find Full Text PDFA series of 2,6-dihydroxynaphthalene-1-methylidene alkylamines whose alkyl chain lengths ranged from 9 to 12 was spectroscopically examined. Transmission ultraviolet-visible absorption microspectroscopy revealed that the spectra of solid thin-films of the crystalline samples showed two distinct profiles depending on polymorphs as well as on alkyl chain length. We concluded that these spectral changes occurred not because of conventional intramolecular proton transfer but because of the molecules' interactions with an external proton source, that is, the intermolecular proton transfer.
View Article and Find Full Text PDFN-shaped organic semiconductors are synthesized via four steps from a readily available starting material. Such semiconductors exhibit preferable ionization potential for p-type operation, thermally stable crystalline phase over 200 °C, and high carrier mobility up to 16 cm(2) V(-1) s(-1) (12.1 cm(2) V(-1) s(-1) on average) with small threshold voltages in solution-crystallized field-effect transistors.
View Article and Find Full Text PDFWe report a facile synthetic protocol for preparation of dinaphtho[2,3-b:2',3'-d]furan (DNF-V) derivatives. DNF-V derivatives showed high emissive behaviour in solid. A solution-crystallized transistor based on alkylated DNF-V derivatives showed an excellent carrier mobility of up to 1.
View Article and Find Full Text PDFTwo birds, one stone! The first kinetic resolution of allyl fluorides was achieved by the development of an organocatalyzed enantioselective allylic trifluoromethylation. Two kinds of chiral fluorinated compounds, which incorporate C*F and C*CF3 units, respectively, can thus be accessed by a single transformation.
View Article and Find Full Text PDFV-shaped organic semiconductors have been designed and synthesized via a large-scale applicable synthetic route. Solution-crystallized films based on such molecules have demonstrated high-performance transistor properties with maximum mobilities of up to 9.5 cm(2) V(-1) s(-1) as well as pronounced thermal durability of up to 150 °C inherent in the V-shaped cores.
View Article and Find Full Text PDFLarge-sized botulinum toxin complex (L-TC) is formed by conjugation of neurotoxin, nontoxic nonhemagglutinin and hemagglutinin (HA) complex. The HA complex is formed by association of three HA-70 molecules and three HA-33/HA-17 trimers, comprised of a single HA-17 and two HA-33 proteins. The HA-33/HA-17 trimer isolated from serotype D L-TC has the ability to bind to and penetrate through the intestinal epithelial cell monolayer in a sialic acid-dependent manner, and thus it plays an important role in toxin delivery through the intestinal cell wall.
View Article and Find Full Text PDFThe first catalytic asymmetric carbonyl ylide cycloaddition with arylallenes is described. With dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate], Rh2(S-TCPTTL)4, the cycloaddition of carbonyl ylides derived from diazoketoesters with arylallenes proceeded in a fully chemo- and regioselective manner to give highly functionalized 8-oxabicyclo[3.2.
View Article and Find Full Text PDFTo develop potent covalent inhibitors, the noncovalent interactions around the transition state to form covalent bonding should be optimized because the potency of the inhibitor can be depending on the energy of the transition state. Here, we report an efficient analysis of the noncovalent binding mode of a potent covalent proteasome inhibitor 3a around the transition state by a combined use of the chemical approach, i.e.
View Article and Find Full Text PDFCyanidioschyzon merolae (Cm) is a single cell red algae that grows in rather thermophilic (40-50°C) and acidic (pH 1-3) conditions. Ferredoxin (Fd) was purified from this algae and characterized as a plant-type [2Fe-2S] Fd by physicochemical techniques. A high resolution (0.
View Article and Find Full Text PDFWe previously reported that chiral Zn(2+) complexes that were designed to mimic the actions of class-I and class-II aldolases catalyzed the enantioselective aldol reactions of acetone and its analogues thereof with benzaldehyde derivatives. Herein, we report the synthesis of new chiral Zn(2+) complexes that contain Zn(2+)-tetraazacyclododecane (Zn(2+)-[12]aneN4) moieties and amino acids that contain aliphatic, aromatic, anionic, cationic, and dipeptide side chains. The chemical and optical yields of the aldol reaction were improved (up to 96 % ee) by using ZnL complexes of L-decanylglycyl-pendant [12]aneN4 (L-ZnL(7)), L-naphthylalanyl-pendant [12]aneN4 (L-ZnL(10)), L-biphenylalanyl-pendant [12]aneN4 (L-ZnL(11)), and L-phenylethylglycyl-pendant [12]aneN4 ligands (L-ZnL(12)).
View Article and Find Full Text PDF