Publications by authors named "Akihisa Kita"

Two strains, Afipia sp. 624S and Diaphorobacter sp. 624L, were isolated from an enrichment culture with 4-aminobenzenesulfonate (4-ABS) as the only carbon source.

View Article and Find Full Text PDF

The activation of microbes, which are needed to initiate continuous methane production, can be accomplished by fed-batch methanization. In the present study, marine sediment inoculum was activated by batch mode methanization with repetition of substrate addition using defined organic matter from sugar, protein, or fat at seawater salinity to investigate the potential for application of the activation method to various types of saline waste and microbial community compositions. All substrates had methane potentials close to the theoretical value except for bovine serum albumin (BSA) whose methane potential was lower, but the maximum methane potential reached the value during repeated methanization.

View Article and Find Full Text PDF

A transformant of Moorella thermoacetica was constructed for thermophilic ethanol production from lignocellulosic biomass by deleting two phosphotransacetylase genes, pdul1 and pdul2, and introducing the native aldehyde dehydrogenase gene (aldh) controlled by the promoter from glyceraldehyde-3-phosphate dehydrogenase. The transformant showed tolerance to 540mM and fermented sugars including fructose, glucose, galactose and xylose to mainly ethanol. In a mixed-sugar medium of glucose and xylose, all of the sugars were consumed to produce ethanol at the yield of 1.

View Article and Find Full Text PDF

For the efficient production of target metabolites from carbohydrates, syngas, or H-CO by genetically engineered , the control of acetate production (a main metabolite of ) is desired. Although propanediol utilization protein (PduL) was predicted to be a phosphotransacetylase (PTA) involved in acetate production in , this has not been confirmed. Our findings described herein directly demonstrate that two putative PduL proteins, encoded by Moth_0864 () and Moth_1181 (), are involved in acetate formation as PTAs.

View Article and Find Full Text PDF

Acclimated marine sediment-derived culture was used for semi-continuous methane production from materials equivalent to raw brown algae, without dilution of salinity and without nutrient supply, under 3 consecutive conditions of varying organic loading rates (OLRs) and hydraulic retention time (HRT). Methane production was stable at 2.0gVS/kg/day (39-day HRT); however, it became unstable at 2.

View Article and Find Full Text PDF

Moorella thermoacetica is an anaerobic thermophilic acetogen that is capable of fermenting sugars, H(2)/CO(2) and syngas (H(2)/CO). For this reason, this bacterium is potentially useful for biotechnology applications, particularly the production of biofuel from CO(2). A soil isolate of M.

View Article and Find Full Text PDF

Degradation of propionate under high salinity is needed for biomethane production from salt-containing feedstocks. In this study, marine sediment-derived culture was evaluated to determine the effect of salinity on methanogenic propionate degradation. Microbes in marine sediments were subjected to fed-batch cultivation on propionate for developing acclimatized cultures.

View Article and Find Full Text PDF

Gram-stain-negative, facultatively anaerobic, non-motile, non-spore-forming, rod-shaped bacterium, designated strain HUA-2T, was isolated from an alginate-degrading microbial consortium. Strain HUA-2T was related to Dysgonomonas capnocytophagoides JCM 16697T, Dysgonomonas macrotermitis JCM 19375T and Dysgonomonas mossii CCUG 43457T with 95.1 %, 94.

View Article and Find Full Text PDF
Article Synopsis
  • - Methane fermentation using brown algae is promising, but the process is hindered by the difficulty of microbes to break down alginate, a key component of these algae.
  • - Researchers developed a bacterial consortium that can anaerobically degrade alginate, identifying two dominant strains, HUA-1 and HUA-2, through advanced gene sequencing.
  • - Although the strains share high genetic similarity with known bacteria and have genes linked to alginate breakdown, they did not thrive in isolation on alginate-rich media, indicating a need for cooperative interactions to effectively degrade alginate.
View Article and Find Full Text PDF

A marine sediment collected from Hiroshima Bay was cultured in artificial seawater, containing 0.51 M NaCl and 60 mM acetate and was found to exhibit active methane production at 37°C. Following four successive serial dilutions of cultures in medium containing 0.

View Article and Find Full Text PDF

Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.

View Article and Find Full Text PDF

Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period.

View Article and Find Full Text PDF

We determined a draft genome sequence for Moorella thermoacetica strain Y72, a syngas-assimilating bacterium with high transformation efficiency. This strain was confirmed to be M. thermoacetica because its overall genome sequence characteristics were similar to those of M.

View Article and Find Full Text PDF

A transformation system for Moorella thermoacetica ATCC39073 was developed using thermostable kanamycin resistant gene (kanR) derived from the plasmid pJH1 that Streptococcus faecalis harbored. When kanR with its native promoter was introduced into uracil auxotrophic mutant of M. thermoacetica ATCC39073 together with a gene to complement the uracil auxotrophy as a selection marker, it did not give kanamycin resistance due to poor transcription level of kanR.

View Article and Find Full Text PDF

The application of microbial catalysts to syngas from the gasification of lignocellulosic biomass is gaining interest. Acetogens, a group of anaerobic bacteria, can grow autotrophically on gaseous substrates such as hydrogen and carbon dioxide or syngas and produce acetate via the acetyl-CoA pathway. Here, we report the isolation from a soil sample of two thermophilic acetogen strains, Y72 and Y73, that are closely related to Moorella sp.

View Article and Find Full Text PDF

To develop a microbial production platform based on hydrogen and carbon dioxide, a genetic transformation system for the thermophilic acetogen Moorella thermoacetica ATCC39073 was developed. The uracil auxotrophic strain dpyrF was constructed by disrupting pyrF for orotate monophosphate decarboxylase. The transformation plasmids were methylated by restriction methylases of M.

View Article and Find Full Text PDF