Publications by authors named "Akihiro Unno"

Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects humans and animals. Ingested parasites cross the intestinal epithelium, invade leukocytes and are then disseminated to peripheral organs. However, the mechanism of extravasation of the infected leukocytes remains poorly understood.

View Article and Find Full Text PDF

The intracellular parasite Toxoplasma gondii is thought to disseminate throughout the host by circulation of tachyzoite-infected leukocytes in the blood, and adherence and migration of such leukocytes into solid tissues. However, it is unclear whether T. gondii-infected leukocytes can migrate to solid organs via the general circulation.

View Article and Find Full Text PDF

In mammals with a hemochorial placenta (e.g., primates and rodents), the maternal and fetal bloodstreams are separated by the blood-placenta barrier.

View Article and Find Full Text PDF

The apicomplexan, obligate intracellular parasite Toxoplasma gondii orally infects humans and animals. The parasites cross the intestinal epithelium, invade leukocytes in the general circulation and then disseminate into the peripheral organs. The mechanism of extravasation of the infected leukocytes, however, remains poorly understood.

View Article and Find Full Text PDF

Toxoplasma gondii is an intracellular parasite. It has been thought that T. gondii can disseminate throughout the body by circulation of tachyzoite-infected leukocytes (intracellular parasite) in the blood flow.

View Article and Find Full Text PDF

Detection of the initial site of Toxoplasma gondii reactivation in brain tissue is difficult because the number of latent cysts is small and reactivation is a transient event. To detect the early stage of reactivation in mouse brain tissue, we constructed a cyst-forming strain of T. gondii in the tachyzoite stage, specifically expressing red fluorescence.

View Article and Find Full Text PDF

A new on-column derivatization method based on the redox activity of porous graphitic carbon (PGC) packing materials was presented for enhancement of separation selectivity of HPLC. Two PGC packing materials were used as the solid redox agents as well as the stationary phase, and their redox activities were investigated using trans-1,2-diaminocyclohexanetetraacetate (DCTA) complexes of some metal ions as probe compounds. It was found that the redox property of PGC was modified by treating them with a solution containing a reducing agent, sodium sulfite or hydroxylammonium chloride.

View Article and Find Full Text PDF