Publications by authors named "Akihiro Goryu"

Genetic modification to restore cell functions in the brain can be performed through the delivery of biomolecules in a minimally invasive manner into live neuronal cells within brain tissues. However, conventional nanoscale needles are too short (lengths of ~10 µm) to target neuronal cells in ~1-mm-thick brain tissues because the neuronal cells are located deep within the tissue. Here, we report the use of nanoscale-tipped wire (NTW) arrays with diameters < 100 nm and wire lengths of ~200 µm to address biomolecule delivery issues.

View Article and Find Full Text PDF

Intracellular recording nanoscale electrode devices provide the advantages of a high spatial resolution and high sensitivity. However, the length of nanowire/nanotube-based nanoelectrodes is currently limited to <10 μm long due to fabrication issues for high-aspect-ratio nanoelectrodes. The concept reported here can address the technological limitations by fabricating >100 μm long nanoscale-tipped electrodes, which show intracellular recording capability.

View Article and Find Full Text PDF

Nanoscale devices have the potential to measure biological tissues as well as individual cells/neurons. However, three-dimensional (3D) multi-site probing remains problematic because only planar-type device designs are applicable to sample surfaces. Herein we report 3D nanoscale electrode tipped microwire arrays with high aspect ratios.

View Article and Find Full Text PDF

We developed out-of-plane, high aspect ratio, nanoscale tip silicon microwire arrays for application to penetrating, multisite, nanoscale biological sensors. Silicon microwire arrays selectively grown by gold-catalyzed vapor-liquid-solid growth of silicon can be formed to create sharpened nanotips with a tip diameter of less than 100 nm by utilizing batch-processed silicon chemical etching for only 1-3 min. The tip angles achieved ranged from 11 degrees to 38 degrees.

View Article and Find Full Text PDF