When a simple model-free strategy does not provide sufficient outcomes, an inference-based strategy estimating a hidden task structure becomes essential for optimizing choices. However, the neural circuitry involved in inference-based strategies is still unclear. We developed a tone frequency discrimination task in head-fixed mice in which the tone category of the current trial depended on the category of the previous trial.
View Article and Find Full Text PDFAdaptive behavior requires integrating prior knowledge of action outcomes and sensory evidence for making decisions while maintaining prior knowledge for future actions. As outcome- and sensory-based decisions are often tested separately, it is unclear how these processes are integrated in the brain. In a tone frequency discrimination task with two sound durations and asymmetric reward blocks, we found that neurons in the medial prefrontal cortex of male mice represented the additive combination of prior reward expectations and choices.
View Article and Find Full Text PDFThe activity of neurons in the auditory cortex is driven by both sounds and non-sensory context. To investigate the neuronal correlates of non-sensory context, we trained head-fixed mice to perform a two-alternative-choice auditory task in which either reward or stimulus expectation (prior) was manipulated in blocks. Using two-photon calcium imaging to record populations of single neurons in the auditory cortex, we found that both stimulus and reward expectation modulated the activity of these neurons.
View Article and Find Full Text PDFThe activity of neurons in the auditory cortex is driven by both sounds and non-sensory context. To investigate the neuronal correlates of non-sensory context, we trained head-fixed mice to perform a two-alternative choice auditory task in which either reward or stimulus expectation (prior) was manipulated in blocks. Using two-photon calcium imaging to record populations of single neurons in auditory cortex, we found that both stimulus and reward expectation modulated the activity of these neurons.
View Article and Find Full Text PDFIn perceptual decision-making, prior knowledge of action outcomes is essential, especially when sensory inputs are insufficient for proper choices. Signal detection theory (SDT) shows that optimal choice bias depends not only on the prior but also the sensory uncertainty; however, it is unclear how animals integrate sensory inputs with various uncertainties and reward expectations to optimize choices. We developed a tone-frequency discrimination task for head-fixed mice in which we randomly presented either a long or short sound stimulus and biased the choice outcomes.
View Article and Find Full Text PDFDynamic Bayesian inference allows a system to infer the environmental state under conditions of limited sensory observation. Using a goal-reaching task, we found that posterior parietal cortex (PPC) and adjacent posteromedial cortex (PM) implemented the two fundamental features of dynamic Bayesian inference: prediction of hidden states using an internal state transition model and updating the prediction with new sensory evidence. We optically imaged the activity of neurons in mouse PPC and PM layers 2, 3 and 5 in an acoustic virtual-reality system.
View Article and Find Full Text PDFBecause humans and animals encounter various situations, the ability to adaptively decide upon responses to any situation is essential. To date, however, decision processes and the underlying neural substrates have been investigated under specific conditions; thus, little is known about how various conditions influence one another in these processes. In this study, we designed a binary choice task with variable- and fixed-reward conditions and investigated neural activities of the prelimbic cortex and dorsomedial striatum in rats.
View Article and Find Full Text PDFNeural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex.
View Article and Find Full Text PDFThe estimation of reward outcomes for action candidates is essential for decision making. In this study, we examined whether and how the uncertainty in reward outcome estimation affects the action choice and learning rate. We designed a choice task in which rats selected either the left-poking or right-poking hole and received a reward of a food pellet stochastically.
View Article and Find Full Text PDFAlthough the place code of tone frequency, or tonotopic map, has been widely accepted in the auditory cortex, tone-evoked activation becomes less frequency-specific at moderate or high sound pressure levels. This implies that sound frequency is not represented by a simple place code but that the information is distributed spatio-temporally irrespective of the focal activation. In this study, using a decoding-based analysis, we investigated multi-unit activities in the auditory cortices of anesthetized rats to elucidate how a tone frequency is represented in the spatio-temporal neural pattern.
View Article and Find Full Text PDFIn stimulus-response-outcome learning, different regions in the cortico-basal ganglia network are progressively involved according to the stage of learning. However, the involvement of sensory cortex remains ellusive even though massive cortical projections to the striatum imply its significant role in this learning. Here we show that the global tonotopic representation in the auditory cortex changed progressively depending on the stage of training in auditory operant conditioning.
View Article and Find Full Text PDF