Eculizumab is a C5 inhibitor approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and anti-acetylcholine receptor antibody-positive generalized myasthenia gravis (AChR + gMG) in Japan. We report integrated safety data from post-marketing surveillance in these three indications, focusing on commonly occurring adverse events (AEs) and infection-related AEs. Of 1219 patients registered, 1055 (PNH: 780; aHUS: 192; AChR + gMG: 83) had available safety data.
View Article and Find Full Text PDFRavulizumab is a long-acting C5 inhibitor available for treating paroxysmal nocturnal hemoglobinuria (PNH). Post-marketing surveillance (PMS) was implemented following its approval in September 2019 in Japan. We report safety data obtained through to December 2021 for 218 patients and effectiveness data for 194 patients (182 switched from eculizumab and 12 complement inhibitor-naïve).
View Article and Find Full Text PDFBackground: Atypical hemolytic uremic syndrome (aHUS) is caused by complement dysregulation and is generally diagnosed by exclusion from other disorders of thrombotic microangiopathy (TMA). Eculizumab, a terminal complement inhibitor, has been approved for aHUS treatment since 2013 in Japan. Recently, a scoring system was published to support diagnosis of aHUS.
View Article and Find Full Text PDFBackground: Atypical hemolytic uremic syndrome (aHUS) is an ultra-rare and life-threatening disease. For decades, plasma therapy was used to manage patients with aHUS. Since eculizumab, a recombinant humanized anti-C5 monoclonal antibody, was approved for treatment of aHUS, it has been used to treat patients with aHUS.
View Article and Find Full Text PDFBackground: Eculizumab was approved for atypical haemolytic uraemic syndrome (aHUS) in Japan in 2013. Post-marketing surveillance (PMS) was mandated by regulatory authorities to assess the safety and effectiveness of eculizumab in patients with aHUS in a real-world setting.
Methods: Paediatric patients in the PMS cohort who were <18 years of age at the first administration of eculizumab and diagnosed with aHUS [excluding Shiga toxin-producing Escherichia coli HUS, thrombotic thrombocytopaenic purpura and secondary thrombotic microangiopathy (TMA)] were included in the effectiveness and safety analysis.
All Japanese patients with paroxysmal nocturnal hemoglobinuria (PNH) treated with eculizumab were enrolled in post-marketing surveillance (PMS) between June 2010 and August 2019 to assess the long-term effectiveness and safety of eculizumab. The reduction in intravascular hemolysis, the change in hemoglobin (Hb) level, and the change in renal function were assessed to determine the effectiveness of eculizumab. The types and frequencies of adverse events (AEs) were assessed to determine its safety.
View Article and Find Full Text PDFBefore the emergence of hematopoietic stem cells (HSCs), lineage-restricted progenitors, such as erythro-myeloid progenitors (EMPs), are detected in the embryo or in pluripotent stem cell cultures in vitro. Although both HSCs and EMPs are derived from hemogenic endothelium, it remains unclear how and when these two developmental programs are segregated during ontogeny. Here, we show that hepatic leukemia factor (Hlf) expression specifically marks a developmental continuum between HSC precursors and HSCs.
View Article and Find Full Text PDFPolarization of node cells along the anterior-posterior axis of mouse embryos is responsible for left-right symmetry breaking. How node cells become polarized has remained unknown, however. Wnt5a and Wnt5b are expressed posteriorly relative to the node, whereas genes for Sfrp inhibitors of Wnt signaling are expressed anteriorly.
View Article and Find Full Text PDFUpon acquirement of pulmonary circulation, the ancestral heart may have been remodelled coincidently with, or accompanied by, the production and rearrangement of progenitor cells. However, the progenitor populations that give rise to the left ventricle (LV) and sinus venosus (SV) are still ambiguous. Here we show that the expression of Secreted frizzled-related protein Sfrp5 in the mouse identifies common progenitors for the outflow tract (OFT), LV, atrium and SV but not the right ventricle (RV).
View Article and Find Full Text PDFSfrp2 is overexpressed in stromal cells which maintain hematopoietic stem cells (HSCs) during in vitro culture. We here showed, that coculture of hematopoetic cells with stromal cells with reduced expression of Sfrp2 increases the number lineage-negative Kit(+) Sca-1(+) (LSK) and progenitor cells in vitro. The LSK cells from these cocultures showed activation of canonical Wnt signaling, higher levels of Ki-67, BrdU incorporation, and the number of γH2A.
View Article and Find Full Text PDFBackground & Aims: Obesity-related adipocytokine dysregulation is known to accelerate liver fibrosis progression. Recently, a natural Wnt5a inhibitor, secreted frizzled-related protein 5 (Sfrp5), was identified as a novel adipocytokine that has reduced expression in obese adipose tissue in both rodents and human. In addition, hepatic gene expression of Wnt5a and its receptor frizzled 2 (Fz2) is elevated during fibrosis progression.
View Article and Find Full Text PDFRenal fibrosis is responsible for progressive renal diseases that cause chronic renal failure. Sfrp1 (secreted Frizzled-related protein 1) is highly expressed in kidney, although little is known about connection between the protein and renal diseases. Here, we focused on Sfrp1 to investigate its roles in renal fibrosis using a mouse model of unilateral ureteral obstruction (UUO).
View Article and Find Full Text PDFBackground: Secreted frizzled-related proteins (SFRPs) are a family of proteins that block the Wnt signaling pathway and loss of Sfrp1 expression is observed in breast cancer. The molecular mechanisms by which obesity contributes to breast tumorigenesis are not well defined, but involve increased inflammation. Mice deficient in Sfrp1 show enhanced mammary gland inflammation in response to diet induced obesity (DIO).
View Article and Find Full Text PDFThe molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1), is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals.
View Article and Find Full Text PDFDuring eye lens development, regulation of Wnt/β-catenin signaling is critical for two major processes: initially it must be silent in the lens placode for lens development to proceed, but subsequently it is required for maintenance of the lens epithelium. It is not known how these different phases of Wnt/β-catenin activity/inactivity are regulated. Secreted frizzled related protein-2 (Sfrp2), a putative Wnt-Fz antagonist, is expressed in lens placode and in lens epithelial cells and has been put forward as a candidate for regional Wnt/β-catenin pathway regulation.
View Article and Find Full Text PDFThe Hippo-Yap signaling pathway regulates a number of developmental and adult cellular processes, including cell fate determination, tissue growth, and tumorigenesis. Members of the scaffold protein angiomotin (Amot) family interact with several Hippo pathway components, including Yap (Yes-associated protein), and either stimulate or inhibit Yap activity. We used a combination of genetic, biochemical, and transcriptional approaches to assess the functional consequences of the Amot-Yap interaction in mice and in human cells.
View Article and Find Full Text PDFBackground: In preimplantation mouse embryos, the first cell fate specification to the trophectoderm or inner cell mass occurs by the early blastocyst stage. The cell fate is controlled by cell position-dependent Hippo signaling, although the mechanisms underlying position-dependent Hippo signaling are unknown.
Results: We show that a combination of cell polarity and cell-cell adhesion establishes position-dependent Hippo signaling, where the outer and inner cells are polar and nonpolar, respectively.
Background: Secreted frizzled-related proteins (SFRPs) are a family of proteins that block the Wnt signaling pathway and loss of SFRP1 expression is found in breast cancer along with a multitude of other human cancers. Activated Wnt signaling leads to inappropriate mammary gland development and mammary tumorigenesis in mice. When SFRP1 is knocked down in immortalized non-malignant mammary epithelial cells, the cells exhibit a malignant phenotype which resembles the characteristics observed in metastatic breast cancer stem-like cells.
View Article and Find Full Text PDFSecreted Frizzled related proteins (sFRPs) are a family of proteins that modulate Wnt signaling, which in turn regulates multiple aspects of ventral midbrain (VM) and dopamine (DA) neuron development. However, it is not known which Wnt signaling branch and what aspects of midbrain DA neuron development are regulated by sFRPs. Here, we show that sFRP1 and sFRP2 activate the Wnt/planar-cell-polarity/Rac1 pathway in DA cells.
View Article and Find Full Text PDF