Publications by authors named "Akihiko Saiga"

Secretory phospholipases A(2) (sPLA(2)s) are a diverse family of low molecular mass enzymes (13-18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA(2) (sPLA(2)-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA(2) (sPLA(2)-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA(2)-X in several respects.

View Article and Find Full Text PDF

Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice.

View Article and Find Full Text PDF

We compared the diacylglycerol kinase (DGK) catalyzed phosphorylation of 1-O-hexanoyl-2-oleoylglycerol (HOG) with 1-O-hexanoyl-2-arachidonoylglycerol (HAG). We assayed the activity of DGKalpha and DGKzeta using a liposomal-based assay system. Liposomal assays show that the DGKalpha and, to a lesser extent, DGKzeta preferentially act on substrates containing an arachidonoyl group when this group is incorporated into alkylacylglycerols.

View Article and Find Full Text PDF

The deposition of cholesterol ester within foam cells of the artery wall is fundamental to the pathogenesis of atherosclerosis. Modifications of low density lipoprotein (LDL), such as oxidation, are prerequisite events for the formation of foam cells. We demonstrate here that group X secretory phospholipase A2 (sPLA2-X) may be involved in this process.

View Article and Find Full Text PDF