Publications by authors named "Akihiko Murai"

Post-stroke motor deficits often disrupt the voluntary control of body movements, leading to abnormal feelings. Among these, alterations in the sense of agency (SoA), the feeling of controlling one's movement, are notable because SoA facilitates actions. However, whether patients with more severe motor deficits experience poorer SoA and SoA's clinical impact on motor activity remain unclear.

View Article and Find Full Text PDF

Purpose: This study aimed to provide evidence for the interpretation of the projected frontal area (PFA) during front crawl. To achieve this goal, we developed a method for calculating the PFA of each body segment using digital human technology and compared the pressure drag under two calculation conditions: a combination of the PFA with and without accounting for the horizontal velocity of each body segment.

Methods: Twelve competitive male swimmers performed a 15-meter front crawl at 1.

View Article and Find Full Text PDF

This study aimed to investigate the essential role of the kicking action in front crawl. To achieve this objective, we examined the relationships of the hand propulsive force and trunk inclination with swimming velocity over a wide range of velocities from 0.75 m·s to maximum effort, including the experimental conditions of arm stroke without a pull buoy.

View Article and Find Full Text PDF

Previous studies have demonstrated the potential of surface electromyography (sEMG) spectral decomposition in evaluating muscle performance, motor learning, and early diagnosis of muscle conditions. However, decomposition techniques require large data sets and are computationally demanding, making their implementation in real-life scenarios challenging. Based on the hypothesis that spectral components will present low inter-subject variability, the present paper proposes the foundational principles for developing a real-time system for their extraction by utilizing a pre-defined library of components derived from an extensive data set to match new measurements.

View Article and Find Full Text PDF

We attempted to find a subset model that would allow robust prediction of a swimmer's vertical body position during front crawl with fewer markers, which can reduce extra drag and time-consuming measurements. Thirteen male swimmers performed a 15-metre front crawl either with three different lung-volume levels or various speeds, or both, without taking a breath with 36 reflective markers. The vertical positions of the centre of mass (CoM) and four representative landmarks in the trunk segment over a stroke cycle were calculated using an underwater motion-capture system.

View Article and Find Full Text PDF

The mediolateral ground reaction force (M-L GRF) profile that realizes a symmetrical mediolateral ground reaction impulse (M-L GRI) between both limbs is essential for maintaining a straight movement path. We aimed to examine the M-L GRF production across different running speeds in unilateral transfemoral amputees (TFA) to identify strategies for maintaining straight running. The average medial and lateral GRF, contact time (t), M-L GRI, step width, and center of pressure angle (COPANG) were analyzed.

View Article and Find Full Text PDF

We examined the influence of lung volume on the vertical body position, trunk inclination, and projected frontal area (PFA) during swimming and the inter-relationships among these factors. Twelve highly trained male swimmers performed a 15 m front crawl with sustained maximal inspiration (INSP), maximal expiration (EXP), and intermediate (MID) at a target velocity of 1.20 m·s .

View Article and Find Full Text PDF

Vertical body position during swimming is assumed to closely affect drag. It is consequently associated with swimming velocity; however, the association between swimming velocity and vertical body position has not yet been sufficiently established. Here, we aimed to clarify how vertical body position increases with front crawl velocity and whether there are inter-individual differences in velocity effect.

View Article and Find Full Text PDF

Among the various elements that facilitate the movement of the lower limbs, the anterior cruciate ligament (ACL) is prone to injury. An adequate joint control of the lower limb can prevent ACL injury. Balancing activities between the agonist and the antagonist muscles is vital for joint control.

View Article and Find Full Text PDF

Excessive muscle tension is implicitly caused by inactivity or tension in daily activities, and it results in increased joint stiffness and vibration, and thus, poor performance, failure, and injury in sports. Therefore, the routine measurement of muscle tension is important. However, a co-contraction observed in excessive muscle tension cannot be easily detected because it does not appear in motion owing to the counteracting muscle tension, and it cannot be measured by conventional motion capture systems.

View Article and Find Full Text PDF

We examined the impact of lung-volume levels on the vertical center of mass (CoM) position and kinematics during submaximal front-crawl swimming at constant velocity. Thirteen well-trained male swimmers (21.2 ± 2.

View Article and Find Full Text PDF

Background: Walking and mobility are essential for a satisfactory quality of life. However, individuals with transfemoral amputations have difficulties in preventing falls due to prosthetic knee buckling, defined as the sudden loss of postural support during weight-bearing activities. The risk of prosthetic knee buckling can be evaluated by determining the prosthetic knee angular impulse (PKAI) during the early stance phase.

View Article and Find Full Text PDF

Objective: The emergence of mobile electroencephalogram (EEG) platforms have expanded the use cases of brain-computer interfaces (BCIs) from laboratory-oriented experiments to our daily life. In challenging situations where humans' natural behaviors such as head movements are unrestrained, various artifacts could deteriorate the performance of BCI applications. This paper explored the effect of muscular artifacts generated by participants' head movements on the signal characteristics and classification performance of steady-state visual evoked potentials (SSVEPs).

View Article and Find Full Text PDF

Objective: Exercise training has multiple beneficial effects in patients with arteriosclerotic diseases; however, the exact underlying mechanisms of the effects are not completely understood. This study aimed to evaluate the effectiveness of a supervised exercise program in improving gait parameters, including the variability and walking performance of lower limb movements, in patients with peripheral artery disease (PAD) and intermittent claudication (IC).

Methods: Sixteen patients with a history of PAD and IC were recruited for this study, and they completed a 3-month supervised bicycle exercise program.

View Article and Find Full Text PDF

Knowledge of joint moments will provide greater insight into the manner in which lower-extremity amputees wearing running-specific prostheses regain running capacity and compensate for replacement of an active leg with a passive prosthetic implement. Thus, the purpose of this study was to investigate three-dimensional joint moments during sprinting for unilateral transfemoral amputees wearing running-specific prostheses. Ten sprinters with unilateral transfemoral amputation performed maximal sprinting at the 22 m mark while wearing running-specific prostheses.

View Article and Find Full Text PDF

Muscular artifacts often contaminate electroencephalograms (EEGs) and deteriorate the performance of brain-computer interfaces (BCIs). Although many artifact reduction techniques are available, most of the studies have focused on their reduction ability (i.e.

View Article and Find Full Text PDF

This paper presents a model of environment-human body interaction, which is critical for us to perform balanced motions such as locomotion and activities of daily living while standing. Specifically, movement smoothness and stiffness are quantitatively represented by an impedance between environment and body (ENV-BODY impedance) based on the concept of mechanical impedance, which is commonly used in robotics. The ENV-BODY impedance model considers a spring and a damper to represent the behavior of the center of pressure with respect to the ground reaction force.

View Article and Find Full Text PDF

Monolayer molybdenum disulfide (MoS) is an atomically thin semiconducting material with a direct band gap. This physical property is attributable to atomically thin optical devices such as sensors, light-emitting devices, and photovoltaic cells. Recently, a near-unity photoluminescence (PL) quantum yield of a monolayer MoS was demonstrated via a treatment with a molecular acid, bis(trifluoromethane)sulfonimide (TFSI); however, the mechanism still remains a mystery.

View Article and Find Full Text PDF

Purpose: To evaluate the distance and position of humeral head translation during glenohumeral motion and to investigate the function of the rotator cuff in glenohumeral translation.

Methods: Using 9 cadavers, glenohumeral translation during passive pendulum motion was tracked by an optical motion capture system. Tension was applied to 5 compartments of the rotator cuff muscles, and 7 different conditions of rotator cuff dysfunction were sequentially simulated.

View Article and Find Full Text PDF

Forearm movements realize various functions needed in daily life. For reproduction of the motion sequences, active myoelectric devices have been developed. Usually, feature indices are extracted from observed signals in control strategy; however, the optimal combination of indices is still unclear.

View Article and Find Full Text PDF

Prostheses have enabled individuals with lower extremity amputation (ILEAs) to accomplish many daily activities. Prosthetic feet allow ILEA to locomote and improves their quality of life. Carbon-fiber running-specific prostheses (RSPs) with energy storing capabilities support ILEAs to perform sprinting by partly providing spring-like properties in their amputated legs.

View Article and Find Full Text PDF

Different types of running shoes may have different influence on the negative work of each lower extremity joint. Clarifying this influence can reduce the potential risk of muscle injury. The present study examined the difference in the negative work and associated kinetic and kinematic parameters of the lower extremity joints between training shoes and racing flats during the contact phase of running.

View Article and Find Full Text PDF

Understanding the characteristics of ground reaction forces (GRFs) on both limbs during sprinting in unilateral amputees wearing running-specific prostheses would provide important information that could be utilized in the evaluation of athletic performance and development of training methods in this population. The purpose of this study was to compare GRFs between intact and prosthetic limbs during sprinting in unilateral transfemoral amputees wearing running-specific prostheses. Nine sprinters with unilateral transfemoral amputation wearing the same type of prosthesis performed maximal sprinting on a 40-m runway.

View Article and Find Full Text PDF

Carbon fiber running-specific prostheses are designed to reproduce the spring-like stepping behavior of individuals similar to springs loaded by the entire body mass (i.e. spring-mass model).

View Article and Find Full Text PDF

Dynamics properties of shoulder joint and muscle are experimentally identified under different musculoskeletal conditions for a digital human model with accurate dynamics. Passive swing motions of scapula and upper limb bones in cadaveric specimen with and without muscles are measured by an optical motion capture system. External forces that are applied to the scapula bone are simultaneously measured by a force plate.

View Article and Find Full Text PDF