Publications by authors named "Akihiko Komuro"

Adipogenesis involves intricate molecular mechanisms regulated by various transcription factors and signaling pathways. In this study, we aimed to identify factors specifically induced during adipogenesis in the human preadipocyte cell line, SGBS, but not in the mouse preadipocyte cell line, 3T3-L1. Microarray analysis revealed distinct gene expression profiles, with 1460 genes induced in SGBS cells and 1297 genes induced in 3T3-L1 cells during adipogenesis, with only 297 genes commonly induced.

View Article and Find Full Text PDF

Retinoic acid inducible gene (RIG)-I-like receptors (RLRs), including RIG-I, melanoma differentiation associated-5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), play pivotal roles in viral RNA sensing to initiate antiviral interferon (IFN) responses. We previously reported that an RNA-silencing regulator, transactivation response RNA-binding protein (TRBP), up-regulates MDA5/LGP2-mediated IFN responses through interaction with LGP2. Here, we aimed to investigate the mechanism underlying the TRBP-mediated up-regulation of IFN response.

View Article and Find Full Text PDF

Melanoma differentiation-associated gene 5 (MDA5), a member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), has pivotal roles in innate immune responses against many positive-stranded RNA viruses, including picornavirus and coronavirus. Upon engagement with dsRNA derived from viral infection, MDA5 initiates coordinated signal transduction leading to type I IFN induction to restrict viral replication. In this study, we describe a targeted cleavage events of MDA5 by the 3C protease from Theilovirus.

View Article and Find Full Text PDF

The concept of tRNA recycling has recently emerged from the studies of ribosome-associated quality control. Therein tRNase Z removes the 2', 3'>p from the ANKZF1-cleaved tRNA and the subsequent TRNT1 action re-generates the intact tRNA. To know the roles of the tRNA recycling in vivo, we investigated how viral infection affects the tRNA recycling system by analyzing the mRNA levels of tRNase Z and TRNT1.

View Article and Find Full Text PDF

tRNase Z (ELAC1) and TRNT1 function in tRNA recycling. Recently, we have shown that these genes are upregulated in the cells infected with Theiler's mouse encephalitis virus (TMEV), implying that tRNA recycling functions in response to viral infection. To address the molecular mechanism underlying the ELAC1 upregulation in the cells infected with TMEV, we performed luciferase assays using various plasmid constructs harboring the ELAC1 promoter region.

View Article and Find Full Text PDF

A study of the structural requirements of cholic acid derivatives as liver X receptor (LXR) ligands was performed. A model of cholenamide derivative 1 complexed with LXR showed that the C24 carbonyl oxygen forms a hydrogen bond with His435 located close to Trp457. The N,N-dimethyl group is located in a hydrophobic pocket.

View Article and Find Full Text PDF

Laboratory of genetics and physiology 2 (LGP2) and melanoma differentiation-associated gene 5 (MDA5) cooperatively detect viral RNA in the cytoplasm of Cardiovirus-infected cells and activate innate immune responses. Here, we evaluated whether the double-stranded RNA-binding protein PACT plays a role in this anti-viral response to further elucidate the mechanism. Immunoprecipitation experiments demonstrated that PACT interacts with LGP2 and that this interaction is enhanced by encephalomyocarditis virus (EMCV) infection.

View Article and Find Full Text PDF

LGP2 and MDA5 cooperate to detect viral RNA in the cytoplasm of Picornavirus-infected cells and activate innate immune responses. To further define regulatory components of RNA recognition by LGP2/MDA5, a yeast two-hybrid screen was used to identify LGP2-interacting proteins. The screening has identified the TAR-RNA binding protein (TRBP), which is known to be an essential factor for RNA interference (RNAi).

View Article and Find Full Text PDF

Innate immune signaling is crucial for detection of and the initial response to microbial pathogens. Evidence is provided indicating that LGP2, a DEXH box domain protein related to the RNA recognition receptors RIG-I and MDA5, participates in the cellular response to cytosolic double-stranded DNA (dsDNA). Analysis of embryonic fibroblasts and macrophages from mice harboring targeted disruption in the LGP2 gene reveals that LGP2 can act as a positive regulator of type I IFN and anti-microbial gene expression in response to transfected dsDNA.

View Article and Find Full Text PDF

DNA repair defends against naturally occurring or disease-associated DNA damage during the long lifespan of neurons and is implicated in polyglutamine disease pathology. In this study, we report that mutant huntingtin (Htt) expression in neurons causes double-strand breaks (DSBs) of genomic DNA, and Htt further promotes DSBs by impairing DNA repair. We identify Ku70, a component of the DNA damage repair complex, as a mediator of the DNA repair dysfunction in mutant Htt-expressing neurons.

View Article and Find Full Text PDF

There remain controversy and disagreement on whether Oct-3/4 is expressed in neural stem cells or not. Although many reports had shown expression of Oct-3/4 in somatic stem and progenitor cells, conditional KO mice of Oct-3/4 in neural stem cells did not show any phenotype. Even pseudogenes are suspected for the "false positive" results.

View Article and Find Full Text PDF

Diverse members of the Paramyxovirus family of negative-strand RNA viruses effectively suppress host innate immune responses through the actions of their V proteins. The V protein mediates interference with the interferon regulatory RNA helicase MDA5 to avoid cellular antiviral responses. Analysis of the interaction interface revealed the MDA5 helicase C domain as necessary and sufficient for association with V proteins from human parainfluenza virus type 2, parainfluenza virus type 5, measles virus, mumps virus, Hendra virus, and Nipah virus.

View Article and Find Full Text PDF

The recent, rapid progress in our understanding of cytoplasmic RNA-mediated antiviral innate immune signaling was initiated by the discovery of retinoic acid-inducible gene I (RIG-I) as a sensor of viral RNA. It is now widely recognized that RIG-I and related RNA helicases, melanoma differentiation-associated gene-5 (MDA5) and laboratory of genetics and physiology-2 (LGP2), can initiate and/or regulate RNA and virus-mediated type I IFN production and antiviral responses. As with other cytokine systems, production of type I IFN is a transient process, and can be hazardous to the host if unregulated, resulting in chronic cellular toxicity or inflammatory and autoimmune diseases.

View Article and Find Full Text PDF

On detecting viral RNAs, the RNA helicase retinoic acid-inducible gene I (RIG-I) activates the interferon regulatory factor 3 (IRF3) signalling pathway to induce type I interferon (IFN) gene transcription. How this antiviral signalling pathway might be negatively regulated is poorly understood. Microarray and bioinformatic analysis indicated that the expression of RIG-I and that of the tumour suppressor CYLD (cylindromatosis), a deubiquitinating enzyme that removes Lys 63-linked polyubiquitin chains, are closely correlated, suggesting a functional association between the two molecules.

View Article and Find Full Text PDF

Engagement of the T cell antigen receptor (TCR) during antigen presentation initiates a coordinated action of a large number of signaling proteins and ion channels. AHNAK1 is a scaffold protein, highly expressed by CD4+ T cells, and is a critical component for calcium signaling. We showed that AHNAK1-deficient mice were highly susceptible to Leishmania major infection.

View Article and Find Full Text PDF

Antiviral innate immune responses can be triggered by accumulation of intracellular nucleic acids resulting from virus infections. Double-stranded RNA (dsRNA) can be detected by the cytoplasmic RNA helicase proteins RIG-I and MDA5, two proteins that share sequence similarities within a caspase recruitment domain (CARD) and a DExD/H box RNA helicase domain. These proteins are considered dsRNA sensors and are thought to transmit the signal to the mitochondrial adapter, IPS-1 (also known as MAVS, VISA, or CARDIF) via CARD interactions.

View Article and Find Full Text PDF

The ErbB-4 receptor protein-tyrosine kinase is proteolytically processed by membrane proteases in response to the ligand or 12-O-tetradecanoylphorbol-13-acetate stimulation resulting in the cytoplasmic fragment translocating to the cell nucleus. The WW domain-containing co-transcriptional activator Yes-associated protein (YAP) associates physically with the full-length ErbB-4 receptor and functionally with the ErbB-4 cytoplasmic fragment in the nucleus. The YAP.

View Article and Find Full Text PDF

Phosphorylation of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAP II) largest subunit has an important role in transcription elongation and in coupling transcription to pre-mRNA processing. To identify proteins that can directly bind to the phosphorylated CTD, we screened a human cDNA expression library using 32P-labeled CTD as a probe. Here we report the cloning and characterization of a novel human WW domain-containing protein, PCIF1 (phosphorylated CTD interacting factor 1).

View Article and Find Full Text PDF

PQBP-1 was isolated on the basis of its interaction with polyglutamine tracts. In this study, using in vitro and in vivo assays, we show that the association between ataxin-1 and PQBP-1 is positively influenced by expanded polyglutamine sequences. In cell lines, interaction between the two molecules induces apoptotic cell death.

View Article and Find Full Text PDF