Publications by authors named "Akihiko Kashiwagi"

The present study clarified changes in physiological sensitivities of cultured Nieuwkoop and Faber stage 57 tadpole-organ-heart exposed to thyroxine (T) using acetylcholine (ACh), norepinephrine (NE) and atropine. For preliminary life span and the chemical tests, 60% minimum essential medium (MEM), two types of modified Hank's balanced salt-solution-culture-media (MHBSS-CM) I and II containing relatively lower concentrations of amino acids and collagen were prepared. In preliminary lifespan-test of cultured tadpole hearts, the hearts maintained in 60% MEM was 50 days on average, whereas that of the tadpole-hearts in MHBSS-CMs was extended by 109 days on average, showing superior effectiveness of MHBSS-CMs.

View Article and Find Full Text PDF

Organisms adapt to changes in their environment to survive. The emergence of predators is an example of environmental change, and organisms try to change their external phenotypic systems and physiological mechanisms to adapt to such changes. In general, prey exhibit different phenotypes to predators owing to historically long-term prey-predator interactions.

View Article and Find Full Text PDF

Trace concentrations of a number of pharmaceutically active compounds have been detected in the aquatic environment in many countries, where they are thought to have the potential to exert adverse effects on non-target organisms. Amiodarone (AMD) is one such high-risk compound commonly used in general hospitals. AMD is known to alter normal thyroid hormone (TH) function, although little information is available regarding the specific mechanism by which this disruption occurs.

View Article and Find Full Text PDF

The threat of predation is a driving force in the evolution of animals. We have previously reported that Xenopus laevis enhanced their tail muscles and increased their swimming speeds in the presence of Japanese larval salamander predators. Herein, we investigated the induced gene expression changes in the brains of tadpoles under the threat of predation using 3'-tag digital gene expression profiling.

View Article and Find Full Text PDF

Thyroid hormones are not only responsible for thermogenesis and energy metabolism in animals, but also have an important role in cell differentiation and development. Amphibian metamorphosis provides an excellent model for studying the remodeling of the body. This metamorphic organ remodeling is induced by thyroid hormones, and a larval body is thus converted into an adult one.

View Article and Find Full Text PDF

Predator-induced phenotypic plasticity is the ability of prey to adapt to their native predator. However, owing to environmental changes, encounters with unknown predators are inevitable. Therefore, study of prey and non-native predator interaction will reveal the primary stages of adaptive strategies in prey-predator interactions in the context of evolutionary processes.

View Article and Find Full Text PDF

A large number of chemicals are routinely detected in aquatic environments, and these chemicals may adversely affect aquatic organisms. Accurate risk assessment requires understanding drug-metabolizing systems in aquatic organisms because metabolism of these chemicals is a critical determinant of chemical bioaccumulation and related toxicity. In this study, we evaluated mRNA expression levels of nuclear receptors and drug-metabolizing enzymes as well as cytochrome P450 (CYP) activities in pro-metamorphic tadpoles, froglets, and adult frogs to determine how drug-metabolizing systems are altered at different life stages.

View Article and Find Full Text PDF

In developmental and cell biology it is crucial to evaluate the dynamic profiles of metabolites. An emerging frog model system using Xenopus tropicalis, whose genome sequence and inbred strains are available, is now ready for metabolomics investigation in amphibians. In this study we applied matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) analysis to identify and visualize metabolomic molecular markers in tadpoles of Xenopus tropicalis We detected tissue-specific peaks and visualized their distribution in tissues, and distinguished 19 tissues and their specific peaks.

View Article and Find Full Text PDF

Recent advances in genome editing using programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system, have facilitated reverse genetics in Xenopus tropicalis. To establish a practical workflow for analyzing genes of interest using CRISPR-Cas9, we examined various experimental procedures and conditions. We first compared the efficiency of gene disruption between Cas9 protein and mRNA injection by analyzing genotype and phenotype frequency, and toxicity.

View Article and Find Full Text PDF

The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains.

View Article and Find Full Text PDF

Transcription activator-like effector nucleases (TALENs) have previously been used for targeted genome editing in various organisms including Xenopus laevis. However, because of genomic polyploidization, X. laevis usually possess homeologous genes (homeologs) with quite similar sequences that make the analysis of gene function difficult.

View Article and Find Full Text PDF

Transcription activator-like effector nucleases (TALENs) have been extensively used in genome editing in various organisms. In some cases, however, it is difficult to efficiently disrupt both paralogous genes using a single pair of TALENs in Xenopus laevis because of its polyploidy. Here, we report targeted mutagenesis of multiple and paralogous genes using two pairs of TALENs in X.

View Article and Find Full Text PDF

Recently, gene editing with transcription activator-like effector nucleases (TALENs) has been used in the life sciences. TALENs can be easily customized to recognize a specific DNA sequence and efficiently introduce double-strand breaks at the targeted genomic locus. Subsequent non-homologous end-joining repair leads to targeted gene disruption by base insertion, deletion, or both.

View Article and Find Full Text PDF

Mitochondrial membrane permeability transition (MPT) plays a crucial role in apoptotic tail shortening during anuran metamorphosis. L-carnitine is known to shuttle free fatty acids (FFAs) from the cytosol into mitochondria matrix for β-oxidation and energy production, and in a previous study we found that treatment with L-carnitine suppresses 3, 3', 5-triiodothyronine (T3 ) and FFA-induced MPT by reducing the level of FFAs. In the present study we focus on acetyl-L-carnitine, which is also involved in fatty acid oxidation, to determine its effect on T3 -induced tail regression in Rana rugosa tadpoles and spontaneous tail regression in Xenopus laevis tadpoles.

View Article and Find Full Text PDF

We investigated the characteristics of a novel type I keratin gene in Xenopus laevis during ontogenesis. The transcript was first detected in the posterior region at the late neurula stage, and then restricted to the fin and external gill during embryogenesis. To examine the transcriptional regulation of the keratin gene in vivo, we generated transgenic lines with fluorescent reporter genes driven by its 4.

View Article and Find Full Text PDF

Studies using amphibians have contributed to the progress of life science including developmental biology and cell biology for more than one hundred years. Since the 1950s Xenopus laevis in particular has been used by scientists in many fields for experiments, resulting in the development of various techniques such as microsurgery on early embryos, biosynthesis of gene-encoded protein in oocytes by mRNA injection, misexpression experiments by mRNA injection into embryos, gene knockdown studies by injection of morpholino anti-sense oligonucleotide into fertilized eggs, transgenesis by the I-SceI meganuclease method, and so on. In this paper we will introduce Xenopus tropicalis as an alternative experimental animal.

View Article and Find Full Text PDF

The aims of this study were to assess the utility of a metamorphosis assay for detecting thyroid hormone-disrupting chemicals using Rana rugosa, a domestic frog species in Japan, and to compare species differences in sensitivity to thyroxine (T(4)) and propylthiouracil (PTU) among R. rugosa, Xenopus laevis and Xenopus (Silurana) tropicalis. Tadpoles of R.

View Article and Find Full Text PDF

Amphibian body skin provides an opportunity to investigate the molecular mechanism of thyroid hormone (TH)-dependent organ remodeling during metamorphosis. Global gene expression changes in the TH-dependent body skin remodeling were studied with microarray analysis. We identified 401 genes that were differentially expressed more than fourfold for 7 days after TH-treatment.

View Article and Find Full Text PDF

There is a growing international concern that commonly used environmental contaminants have the potential to disrupt the development and functioning of the reproductive system in amphibians. One such chemical of interests is the herbicide atrazine. Effects of atrazine on sex differentiation were studied using wild-type Xenopus laevis tadpoles and all-ZZ male cohorts of X.

View Article and Find Full Text PDF

This study investigates how rearing under conditions of hypergravity affects amphibian development, Xotx2 and Xag1 gene expression and apoptosis. Uncleaved Xenopus laevis eggs 20 min after insemination, 2 cell stage embryos, and gastrula stage embryos were raised at 2G and 5G, while controls were raised in normal gravity. Apoptosis in brain and eye inner structures of hatching embryos was scored using the TUNEL staining method, and gene expression in tail-bud embryos was analyzed by whole-mount in situ hybridization.

View Article and Find Full Text PDF

Xenopus V2R (xV2R), a family of G-protein-coupled receptors with seven transmembrane domains, is expressed in the Xenopus vomeronasal organ (VNO). There are six subgroups of xV2R, one of which, xV2RE, is predominantly expressed in the VNO. To understand the function of xV2R during VNO development, we developed a new method to achieve stable siRNA-suppression of the V2RE genes by introducing siRNA expression transgenes into the genomes of unfertilized eggs.

View Article and Find Full Text PDF

We investigated the effects of nonylphenol (NP) and triclosan (TCS) on production of vitellogenin (Vg), testosterone (T), and hepatic cytochrome P450 1A and 2B activities in male South African clawed frogs (Xenopus laevis). In a 14-d waterborne exposure test, no significant differences in the level of plasma Vg synthesis in male frogs were observed among the control, 10, 50, and 100 microg/l NP and 20, 100, and 200 microg/l TCS treatment groups. Intraperitoneal injection of male frogs with 2, 20, and 200 microg/g body weight NP resulted in no significant differences in plasma Vg levels among the control and all treatment groups.

View Article and Find Full Text PDF

The West African clawed frog (Silurana tropicalis), which resembles the South African clawed frog (Xenopus laevis), but is somewhat smaller, has a diploid genome and a shorter generation time. Therefore, S. tropicalis has the potential for use as a new model in ecotoxicology.

View Article and Find Full Text PDF

To clarify the role of reactive oxygen species (ROS) in the aging process of amphibians, antioxidant enzyme activity and indexes of ROS damage were investigated biochemically using the livers of 3- and 10-year-old Rana nigromaculata frog males and females. Findings revealed no significant difference in survival rate between males and females. Antioxidant enzyme activity displayed an age-related decline.

View Article and Find Full Text PDF