Publications by authors named "Akihiko Ichikawa"

In this study, we developed a procedure for assembling hepatic microstructures into tube shapes using magnetic self-assembly for in vitro 3D micro-tissue fabrication. To this end, biocompatible hydrogels, which have a toroidal shape, were made using the micro-patterned electrodeposition method. Ferrite particles were used to coat the fabricated toroidal hydrogel microcapsules using a poly-L-lysine membrane.

View Article and Find Full Text PDF

We developed a procedure for fabricating movable biological cell structures using biodegradable materials on a microfluidic chip. A photo-cross-linkable biodegradable hydrogel gelatin methacrylate (GelMA) was used to fabricate arbitrary microstructure shapes under a microscope using patterned ultraviolet light. The GelMA microstructures were movable inside the microfluidic channel after applying a hydrophobic coating material.

View Article and Find Full Text PDF

Background: Influenza virus attaches to sialic acid residues on the surface of host cells via the hemagglutinin (HA), a glycoprotein expressed on the viral envelope, and enters into the cytoplasm by receptor-mediated endocytosis. The viral genome is released and transported in to the nucleus, where transcription and replication take place. However, cellular factors affecting the influenza virus infection such as the cell cycle remain uncharacterized.

View Article and Find Full Text PDF

Influenza A viruses are a major cause of mortality. Given the potential for future lethal pandemics, effective drugs are needed for the treatment of severe influenza such as that caused by H5N1 viruses. Using mediator lipidomics and bioactive lipid screen, we report that the omega-3 polyunsaturated fatty acid (PUFA)-derived lipid mediator protectin D1 (PD1) markedly attenuated influenza virus replication via RNA export machinery.

View Article and Find Full Text PDF

Rationale: Patients who developed acute respiratory distress syndrome (ARDS) after infection with severe respiratory viruses (e.g., severe acute respiratory syndrome-coronavirus, H5N1 avian influenza virus), exhibited unusually high levels of CXCL10, which belongs to the non-ELR (glutamic-leucine-arginine) CXC chemokine superfamily.

View Article and Find Full Text PDF

We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group).

View Article and Find Full Text PDF

In the present study, we redescribe and compare Cardiodactylus novaeguineae (Haan, 1842) and Cardiodactylus guttulus (Matsumura, 1913 ), completing previous descriptions and adding many information on morphology, including both male and female genitalia and forewing venation, distribution, habitat, behavior, calling, and courtship songs. A neotype series is selected for C. novaeguineae and deposited in RMNH, Leiden MNHN, Paris, AMNH, New York and SAMA, Adelaide.

View Article and Find Full Text PDF

A novel approach appropriate for rapid separation and immobilization of a single cell by concomitantly utilizing laser manipulation and locally thermosensitive hydrogelation is proposed in this paper. We employed a single laser beam as optical tweezers for separating a target cell and locating it adjacent to a fabricated, transparent micro heater. Simultaneously, the target cell is immobilized or partially entrapped by heating the thermosensitive hydrogel with the micro heater.

View Article and Find Full Text PDF

We developed a novel separation method for random screening of target microorganisms from a large heterogeneous population by using a local viscosity control. A thermal sol-gel transformation material is mixed with the sample liquid and we controlled the state from sol to gel and gel to sol reversibly based on the temperature change controlled by heating of the microelectrode with the electric current and focused laser irradiation near the target. The selected microorganisms are fixed on the bottom plate by gel, since the viscosity around the target is temporally increased by the local heating by the focused laser.

View Article and Find Full Text PDF