The use of an immersive virtual reality system as a work space for sports and physical education can help maintain physical communication from separate places. In this study, we verified the possibility of constructing a movement synchrony system by reproducing the mathematical ordered pattern of "triadic jumping" in a virtual space. Three jumpers were asked to move together in a space that was cramped and insufficient for them to pass each other.
View Article and Find Full Text PDFIn real hockey or soccer games, scoring opportunities usually occur quite rarely, and thus, for most of the duration of a game, the ball is drifting between the two goals. This pass-chaining situation can be regarded as the stable state of the offense-defense interaction. In the current study, temporal and spatial structure of this dynamical state was unveiled quantification of the "defensive pressure distribution" on the pass trajectory, which was modeled as a non-linear function of the distance between the defender(s) and a given position on the pitch.
View Article and Find Full Text PDFWe investigated whether the patterns of coordination that emerged during a three-participant (triadic) jumping task were defined by the symmetries of the (multi) agent-environment task space. Triads were instructed to jump around different geometrical arrangements of hoops. The symmetry of the hoop geometry was manipulated to create two symmetrical and two asymmetrical participant-hoop configurations.
View Article and Find Full Text PDFWhen two or more candle flames are fused by approaching them together, the resulting large flame often exhibits flickering, i.e., prolonged high-frequency oscillation in its size and luminance.
View Article and Find Full Text PDFParticipation in interpersonal competitions, such as fencing or Japanese martial arts, requires players to make instantaneous decisions and execute appropriate motor behaviors in response to various situations. Such actions can be understood as complex phenomena emerging from simple principles. We examined the intentional switching dynamics associated with continuous movement during interpersonal competition in terms of their emergence from a simple syntax.
View Article and Find Full Text PDFIn many competitive sports, players need to quickly and continuously execute movements that co-adapt to various movements executed by their opponents and physical objects. In a martial art such as kendo, players must be able to skillfully change interpersonal distance in order to win. However, very little information about the task and expertise properties of the maneuvers affecting interpersonal distance is available.
View Article and Find Full Text PDFIn competitive sport game behavior, certain interpersonal patterns of movement coordination evolve even though each individual player only intends to exert their own strategy to win. To investigate this interpersonal pattern formation process, we asked pairs of naïve participants to engage in a play-tag game in which they had to remove a tag fastened to their partner's hip. Relative phase analysis of the players' step towards-away velocities indicated that anti-phase synchronization evolved across 10 repetitions of the game.
View Article and Find Full Text PDFIn order to pass through apertures safely and efficiently, individuals must perceive the width of the aperture relative to (1) the width of the person-plus-object system and to (2) their (anticipated) movement speed. The present study investigated whether athletes who have extensive experience playing sports that require running through narrow spaces while wearing shoulder pads control their shoulder rotations differently while performing this behavior than athletes who lack such experience. Groups of athletes with experience competing in different sports (American football, rugby, and control athletes) performed a behavioral task in which they ran or walked between two tucking dummies with or without wearing shoulder pads.
View Article and Find Full Text PDF