Publications by authors named "Akie Tanabe"

Previously, we have shown that pyrogallol alleviated nasal symptoms and suppressed IL-9 gene up-regulation in allergy model rats by inhibiting calcineurin/NFAT signaling. As pyrogallol has antioxidative activity, it may be responsible for inhibiting calcineurin/NFAT signaling-mediated IL-9 gene expression. However, the relationship between antioxidative activity and suppression of IL-9 gene expression has not been elucidated yet.

View Article and Find Full Text PDF

Background: Mirtazapine, a noradrenergic and specific serotonergic antidepressant (NaSSA), shows multiple pharmacological actions such as inhibiting presynaptic α2 noradrenaline receptor (NAR) and selectively activating 5-hydroxytriptamine (5-HT) 1A receptor (5-HT1AR). Mirtazapine was also reported to increase dopamine release in the cortical neurons with 5-HT dependent manner. To examine whether mirtazapine has a therapeutic potency in Parkinson's disease (PD), we examined this compound in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice model of PD.

View Article and Find Full Text PDF

Abnormal motor behaviors in Parkinson's disease (PD) result from striatal dysfunction due to an imbalance between dopamine and glutamate transmissions that are integrated by dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32). c-Abelson tyrosine kinase (c-Abl) phosphorylates cyclin-dependent kinase 5 (Cdk5) at Tyr15 to increase the activity of Cdk5, which reduces the efficacy of dopaminergic signaling by phosphorylating DARPP-32 at Thr75 in the striatum. Here, we report that in the mouse striatum, a novel c-Abl inhibitor, nilotinib (AMN107), inhibits phosphorylation of both Cdk5 at Tyr15 and DARPP-32 at Thr75, which is negatively regulated by dopamine receptor activation through a D2 receptor-mediated mechanism.

View Article and Find Full Text PDF

Striatal functions depend on the activity balance between the dopamine and glutamate neurotransmissions. Glutamate inputs activate cyclin-dependent kinase 5 (Cdk5), which inhibits postsynaptic dopamine signaling by phosphorylating DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, 32 kDa) at Thr75 in the striatum. c-Abelson tyrosine kinase (c-Abl) is known to phosphorylate Cdk5 at Tyr15 (Tyr15-Cdk5) and thereby facilitates the Cdk5 activity.

View Article and Find Full Text PDF