Philos Trans R Soc Lond B Biol Sci
March 2005
In meiosis, a physical attachment, or cohesion, between the centromeres of the sister chromatids is retained until their separation at anaphase II. This cohesion is essential for ensuring accurate segregation of the sister chromatids in meiosis II and avoiding aneuploidy, a condition that can lead to prenatal lethality or birth defects. The Drosophila MEI-S332 protein localizes to centromeres when sister chromatids are attached in mitosis and meiosis, and it is required to maintain cohesion at the centromeres after cohesion along the sister chromatid arms is lost at the metaphase I/anaphase I transition.
View Article and Find Full Text PDFDuring Drosophila oogenesis nurse cells become polyploid, enabling them to provide the developing oocyte with vast amounts of maternal messages and products. The nurse cells then die by apoptosis. In nurse cells, as in many other polyploid or polytene tissues, replication is differentially controlled and the heterochromatin is underreplicated.
View Article and Find Full Text PDFAnimals and plants use modified cell cycles to achieve particular developmental strategies. In one common example, most animals and plants have tissues in which the cells become polyploid or polytene by means of an S-G cycle, but the mechanism by which mitosis is inhibited in the endo cycle is not understood. The Drosophila morula (mr) gene regulates variant cell cycles, because in addition to disrupting the archetypal cycle (G1-S-G2-M), mr mutations affect the rapid embryonic (S-M) divisions as well as the endo cycle (S-G) that produces polyploid cells.
View Article and Find Full Text PDF