Stem cells play a critical role in cancer development by contributing to cell heterogeneity, lineage plasticity, and drug resistance. We created gene expression networks from hundreds of mouse tissue samples (both normal and tumor) and integrated these with lineage tracing and single-cell RNA-seq, to identify convergence of cell states in premalignant tumor cells expressing markers of lineage plasticity and drug resistance. Two of these cell states representing multilineage plasticity or proliferation were inversely correlated, suggesting a mutually exclusive relationship.
View Article and Find Full Text PDFSemin Cancer Biol
November 2023
Epithelial-to-mesenchymal transition or transformation (EMT) is a cell shape-changing process that is utilized repeatedly throughout embryogenesis and is critical to the attainment of a precise body plan. In the adult, EMT is observed under both normal and pathological conditions, such as during normal wounding healing, during development of certain fibrotic states and vascular anomalies, as well as in some cancers when malignant cells progress to become more aggressive, invasive, and metastatic. Epithelia derived from any of the three embryonic germ layers can undergo EMT, including those derived from mesoderm, such as endothelial cells (sometimes termed Endo-MT) and those derived from endoderm such as fetal liver stroma.
View Article and Find Full Text PDFHereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by small, dilated clustered vessels (telangiectasias) and by larger visceral arteriovenous malformations (AVMs), which directly connect the feeding arteries with the draining veins. These lesions are fragile, prone to rupture, and lead to recurrent epistaxis and/or internal hemorrhage among other complications. Germline heterozygous loss-of-function (LOF) mutations in Bone Morphogenic Protein 9 (BMP9) and BMP10 signaling pathway genes (endoglin-ENG, activin like kinase 1 ACVRL1 aka ALK1, and SMAD4) cause different subtypes of HHT (HHT1, HHT2 and HHT-juvenile polyposis (JP)) and have a worldwide combined incidence of about 1:5000.
View Article and Find Full Text PDFSingle host-symbiont interactions should be reconsidered from the perspective of the pathobiome. We revisit here the interactions between entomopathogenic nematodes (EPNs) and their microbiota. We first describe the discovery of these EPNs and their bacterial endosymbionts.
View Article and Find Full Text PDFDiscovered over four decades ago, transforming growth factor β (TGFβ) is a potent pleiotropic cytokine that has context-dependent effects on most cell types. It acts as a tumor suppressor in some cancers and/or supports tumor progression and metastasis through its effects on the tumor stroma and immune microenvironment. In TGFβ-responsive tumors it can promote invasion and metastasis through epithelial-mesenchymal transformation, the appearance of cancer stem cell features, and resistance to many drug classes, including checkpoint blockade immunotherapies.
View Article and Find Full Text PDFBackground: Renal transplant recipients (RTRs) are at increased risk of keratinocyte cancer (KC), especially cutaneous squamous cell carcinoma (cSCC). Previous studies identified a genetic variant of the () gene, C677T, which conferred a risk for diagnosis of cSCC in Irish RTRs.
Objective: We sought to find further genetic variation in and overlap genes that may be associated with a diagnosis of KC in RTRs.
αvβ8 integrin, a key activator of transforming growth factor β (TGF-β), inhibits anti-tumor immunity. We show that a potent blocking monoclonal antibody against αvβ8 (ADWA-11) causes growth suppression or complete regression in syngeneic models of squamous cell carcinoma, mammary cancer, colon cancer, and prostate cancer, especially when combined with other immunomodulators or radiotherapy. αvβ8 is expressed at the highest levels in CD4+CD25+ T cells in tumors, and specific deletion of β8 from T cells is as effective as ADWA-11 in suppressing tumor growth.
View Article and Find Full Text PDFTGFβ signalling has key roles in cancer progression: most carcinoma cells have inactivated their epithelial antiproliferative response and benefit from increased TGFβ expression and autocrine TGFβ signalling through effects on gene expression, release of immunosuppressive cytokines and epithelial plasticity. As a result, TGFβ enables cancer cell invasion and dissemination, stem cell properties and therapeutic resistance. TGFβ released by cancer cells, stromal fibroblasts and other cells in the tumour microenvironment further promotes cancer progression by shaping the architecture of the tumour and by suppressing the antitumour activities of immune cells, thus generating an immunosuppressive environment that prevents or attenuates the efficacy of anticancer immunotherapies.
View Article and Find Full Text PDFBackground: Checkpoint blockade immunotherapy has improved metastatic cancer patient survival, but response rates remain low. There is an unmet need to identify mechanisms and tools to circumvent resistance. In human patients, responses to checkpoint blockade therapy correlate with tumor mutation load, and intrinsic resistance associates with pre-treatment signatures of epithelial mesenchymal transition (EMT), immunosuppression, macrophage chemotaxis and TGFβ signaling.
View Article and Find Full Text PDFTumors comprise cancer stem cells (CSCs) and their heterogeneous progeny within a stromal microenvironment. In response to transforming growth factor-β (TGF-β), epithelial and carcinoma cells undergo a partial or complete epithelial-mesenchymal transition (EMT), which contributes to cancer progression. This process is seen as reversible because cells revert to an epithelial phenotype upon TGF-β removal.
View Article and Find Full Text PDFAngiogenesis, the development of new blood vessels, is a key process in disease. We reported that insulin promotes translocation of transforming growth factor β (TGF-β) receptors to the plasma membrane of epithelial and fibroblast cells, thus enhancing TGF-β responsiveness. Since insulin promotes angiogenesis, we addressed whether increased autocrine TGF-β signaling participates in endothelial cell responses to insulin.
View Article and Find Full Text PDFDuring epithelial-mesenchymal transition (EMT), reprogramming of gene expression is accompanied by histone modifications. Whether EMT-promoting signaling directs functional changes in histone methylation has not been established. We show here that the histone lysine methyltransferase SETDB1 represses EMT and that, during TGF-β-induced EMT, cells attenuate SETDB1 expression to relieve this inhibition.
View Article and Find Full Text PDFTransforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-β (TGF-β) signaling, and TGF-β drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-β also activates the Erk MAPK pathway through recruitment and Tyr phosphorylation of the adaptor protein ShcA by the activated TGF-β type I receptor.
View Article and Find Full Text PDFThe highly conserved wiring of the SMAD-dependent transforming growth factor β (TGFβ) superfamily signaling pathway has been mapped over the last 20 years after molecular discovery of its component parts. Numerous alternative TGFβ-activated signaling pathways that elicit SMAD-independent biological responses also exist. However, the molecular mechanisms responsible for the renowned context dependency of TGFβ signaling output remains an active and often confounding area of research, providing a prototype relevant to regulation of other signaling pathways.
View Article and Find Full Text PDFHHT shows clinical variability within and between families. Organ site and prevalence of arteriovenous malformations (AVMs) depend on the HHT causative gene and on environmental and genetic modifiers. We tested whether variation in the functional ENG allele, inherited from the unaffected parent, alters risk for pulmonary AVM in HHT1 mutation carriers who are ENG haploinsufficient.
View Article and Find Full Text PDFVascular development of the central nervous system and blood-brain barrier (BBB) induction are closely linked processes. The role of factors that promote endothelial sprouting and vascular leak, such as vascular endothelial growth factor A, are well described, but the factors that suppress angiogenic sprouting and their impact on the BBB are poorly understood. Here, we show that integrin αVβ8 activates angiosuppressive TGFβ gradients in the brain, which inhibit endothelial cell sprouting.
View Article and Find Full Text PDFOutcome of TGFβ1 signaling is context dependent and differs between individuals due to germ-line genetic variation. To explore innate genetic variants that determine differential outcome of reduced TGFβ1 signaling, we dissected the modifier locus Tgfbm3, on mouse chromosome 12. On a NIH/OlaHsd genetic background, the Tgfbm3b(C57) haplotype suppresses prenatal lethality of Tgfb1(-/-) embryos and enhances nuclear accumulation of mothers against decapentaplegic homolog 2 (Smad2) in embryonic cells.
View Article and Find Full Text PDFTGFβ activation and signaling have been extensively studied in experimental models of allergen-induced asthma as potential therapeutic targets during chronic or acute phases of the disease. Outcomes of experimental manipulation of TGFβ activity have been variable, in part due to use of different model systems. Using an ovalbumin (OVA)-induced mouse model of asthma, we here show that innate variation within TGFβ1 genetic modifier loci, Tgfbm2 and Tgfbm3, alters disease susceptibility.
View Article and Find Full Text PDFMany drugs that target transforming growth factor-β (TGFβ) signalling have been developed, some of which have reached Phase III clinical trials for a number of disease applications. Preclinical and clinical studies indicate the utility of these agents in fibrosis and oncology, particularly in augmentation of existing cancer therapies, such as radiation and chemotherapy, as well as in tumour vaccines. There are also reports of specialized applications, such as the reduction of vascular symptoms of Marfan syndrome.
View Article and Find Full Text PDFTwo new studies show that haploinsufficiency for causes a familial syndrome of thoracic aortic aneurysms and dissections with other clinical features that overlap the Marfan, Loeys-Dietz spectrum of syndromes. Their finding of loss-of-function mutations in yet another transforming growth factor (TGF)-β pathway gene reinforces the seeming paradox of observed increases in the downstream TGF-β signaling pathway.
View Article and Find Full Text PDF