The current study goal was to improve mucoadhesive potential and ocular pharmacokinetics of nanoparticles of thiolated xyloglucan (TXGN) containing moxifloxacin (MXF). Thiolation of xyloglucan (XGN) was achieved with esterification with 3-mercaptopropionic acid. TXGN was characterized by NMR and FTIR analysis.
View Article and Find Full Text PDFNano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits.
View Article and Find Full Text PDFThe present work aimed to develop nanoparticles of tobramycin (TRM) using thiolated chitosan (TCS) in order to improve the mucoadhesion, antibacterial effect and pharmacokinetics. The nanoparticles were evaluated for their compatibility, thermal stability, particle size, zeta potential, mucoadhesion, drug release, kinetics of TRM release, corneal permeation, toxicity and ocular irritation. The thiolation of chitosan was confirmed by H NMR and FTIR, which showed peaks at 6.
View Article and Find Full Text PDFDepression is the major mental illness which causes along with loss of interest in daily life, a feeling of hopelessness, appetite or weight changes, anger and irritability. Due to the hepatic first-pass metabolism, the absolute bioavailability of fluvoxamine (FVM) after oral administration is about 50%. By avoiding the pre-systemic metabolism, nasal delivery would boost bioavailability of FVM.
View Article and Find Full Text PDFPurpose: The goal of this study was to make pH-sensitive HPMC/Neocel C19-based interpenetrating polymeric networks (IPNs) that could be used to treat different diseases. An assembled novel carrier system was demonstrated in this study to achieve multiple functions such as drug protection and self-regulated release.
Methods: Misoprostol (MPT) was incorporated as a model drug in hydroxyl-propyl-methylcellulose (HPMC)- and Neocel C19-based IPNs for controlled release.
Purpose: Numerous carbohydrate polymers are frequently used in wound-dressing films because they are highly effective materials for promoting successful wound healing. In this study, we prepared amikacin (AM)-containing hydrogel films through the cross-linking of chitosan (CS) with folic acid along with methacrylic acid (MA), ammonium peroxodisulfate (APS), and methylenebisacrylamide (MBA). In the current studies, an effort has been made to look at the possibilities of these materials in developing new hydrogel film wound dressings meant for a slow release of the antibiotic AM and to enhance the potential for wound healing.
View Article and Find Full Text PDFBiopharmaceutical classification systems (BCS) class III drugs belongs to a group of drugs with high solubility in gastrointestinal (GI) fluids and low membrane permeability result in significantly low bioavailability. Self-emulsifying drug delivery systems (SEDDS) considered a suitable candidate to enhance the bioavailability of poorly soluble drugs by improving their membrane permeability, however, incorporating hydrophilic drugs in to these carriers remained a great challenge. The aim of this study was to develop hydrophobic ion pairs (HIPs) of a model BCS class-III drug tobramycin (TOB) in order to incorporate into SEDDS and improve its bioavailability.
View Article and Find Full Text PDFMost biopharmaceutics classification system (BCS) class IV drugs have limited oral bioavailability due to poor solubility and poorer permeability. This work aims to investigate the possibility of utilizing disulfide bridged nanoparticles to improve BCS IV drug solubility and oral absorption. Disulfide bridged nanoparticles were made using thiolated sodium alginate (TSA) and thiolated eudragit RS100 (TERS100).
View Article and Find Full Text PDFCutaneous burn wounds are a common and troublesome critical issue of public health. Over the last decade, many researchers have investigated the development of novel therapeutic modalities which are capable of fully regeneration and reinstatement of structure and function of the skin with no or limited scar formation. Novel pharmaceutical carriers are offering a potential platform to deliver the drug effectively and to overcome the limitation associated with conventional wound dressings.
View Article and Find Full Text PDFWe developed alginate-based floating microbeads of clarithromycin with therapeutic oils for the possible eradication of () infections by enhancing the residence time of the carrier at the site of infection. In pursuit of this endeavor, the alginate was blended with hydroxy propyl methyl cellulose (HPMC) as an interpenetrating polymer to develop beads by ionotropic gelation using calcium carbonate as a gas generating agent. The developed microbeads remained buoyant under gastric conditions for 24 h.
View Article and Find Full Text PDFThe occurrence of fungal infections has increased over the past two decades. It is observed that superficial fungal infections are treated by conventional dosage forms, which are incapable of treating deep infections due to the barrier activity possessed by the stratum corneum of the skin. This is why the need for a topical preparation with advanced penetration techniques has arisen.
View Article and Find Full Text PDFBackground: Nature represents a basic source of medicinal scaffolds that can develop into potent drugs used in the treatment of many diseases.
Aim: The present study was planned to evaluate the combined effects of polyherbal methanolic extract of the herbs (fruit of capsicum, bark of cinnamon, rhizome of turmeric and rhizome of ginger) that were individually well known for their analgesic and anti-inflammatory activities. Furthermore, we aimed to develop hydrogel formulation of this polyherbal extract and to characterize and evaluate its analgesic and anti-inflammatory potential.
The purpose of the study was to develop an SNEDDS to improve the solubility and bioavailability of pitavastatin. The solubility of pitavastatin in different oils, surfactants, and co-surfactants was determined and a pseudo-ternary phase diagram was constructed. The SNEDDS was characterized by zeta-sizer, zeta-potential, FTIR, DSC, and TGA.
View Article and Find Full Text PDFIn this article, formulation studies for terbinafine hydrochloride nanoemulsions, prepared by high-energy ultrasonication technique, are described. Pseudo-ternary phase diagram was constructed in order to find out the optimal ratios of oil and surfactant/co-solvent mixture for nanoemulsion production. Clove and olive oils were selected as oil phase.
View Article and Find Full Text PDFAim: This work aims to formulate topical hybrid gel containing chitosan-coated moxifloxacin (MXF) HCl nanoparticles (NPs) with enhanced antibacterial and healing activity.
Methods: MXF HCl NPs prepared by the ionic gelation method were loaded onto a hybrid chitosan carbomer gel. Size analysis of the prepared NPs was performed using SEM and Zeta-sizer.
The development and optimization of controlled release lipospheres (LS) from safe biocompatible behenic acid (BA) was performed for not only enhancing patient's compliance against highly prevailed chronic diabetes but also to vanquish the insufficiencies of traditional methods of drug delivery. The Box-Bhenken design (BBD) was utilized to statistically investigate the impact of formulation variables on percentage yield ( ), entrapment efficiency ( ), and SG-release ( ) from saxagliptin- (SG-) loaded LS, and the chosen optimized LS were subjected to a comparative pharmacokinetic analysis against commercially available SG brand. The compatibility analysis performed by DSC and FTIR established a complete lack of interaction of formulation components with SG, while p-XRD suggested a mild transformation of crystalline drug to its amorphous form during encapsulation process.
View Article and Find Full Text PDFThe main objective of this research work was the development and evaluation of transfersomes integrated oral films for the bioavailability enhancement of Ebastine (EBT) to treat allergic rhinitis. The flexible transfersomes, consisting of drug (EBT), lipid (Phosphatidylcholine) and edge activator (EA) Polyoxyethylene sorbitan monooleate or Sorbitan monolaurate, were prepared with the conventional thin film hydration method. The developed transfersomes were further integrated into oral films using the solvent casting method.
View Article and Find Full Text PDFIn the current research, attempt is made to fabricate a nanoemulsion (NE) containing an antifungal agent. The prepared formulation has been expected to enhance skin penetration. It is also studied for in vitro drug release and toxicity assessment.
View Article and Find Full Text PDFCyclosporine A (CsA) is an immunosuppressant agent. Two niosomal formulations of CsA, F and FSB were formulated. Both formulations were studied in terms of size, polydispersity index (PDI), morphology and entrapment efficacy etc.
View Article and Find Full Text PDFThe role of nanobiotechnology in the treatment of diseases is limitless. In this review we tried to focus main aspects of nanotechnology in drug carrier systems for treatment and diagnosis of various diseases such as cancer, pulmonary diseases, infectious diseases, vaccine development, diabetes mellitus and the role of nanotechnology on our economy and its positive social impacts on our community. We discussed here about the different "Biotechnano Strategies" to develop new avenues and ultimately improve the treatment of multiple diseases.
View Article and Find Full Text PDFThe aim of our study was to prepare nanoparticles of disulfide bridged thiolated chitosan and eudragit RS100 using the air oxidation method for controlled drug delivery. The developed nanoparticles were characterized by FTIR, DSC, TGA, zeta sizer, zeta potential, SEM and H NMR. The loading, entrapment efficiency and in-vitro release of moxifloxacin from nanoparticles was determined.
View Article and Find Full Text PDFWound-healing is complicated process that is affected by many factors, especially bacterial infiltration at the site and not only the need for the regeneration of damaged tissues but also the requirement for antibacterial, anti-inflammatory, and analgesic activity at the injured site. The objective of the present study was to develop and evaluate the natural essential oil-containing nanofiber (NF) mat with enhanced antibacterial activity, regenerative, non-cytotoxic, and wound-healing potential. Clove essential oil (CEO) encapsulated in chitosan and poly-ethylene oxide (PEO) polymers to form NFs and their morphology was analyzed using scanning electron microscopy (SEM) that confirmed the finest NFs prepared with a diameter of 154 ± 35 nm.
View Article and Find Full Text PDFBackground: In recent era, pH sensitive polymeric carriers that combines the materials engineering and medicine is gaining researcher's attention as they maximizes drug concentration at site of absorption and reduces side effects for e.g. orally administered cetirizine HCl (CTZ HCl) upsets the stomach and furthermore shows high intestinal absorption.
View Article and Find Full Text PDFAlthough ebastine (EBT) can impede histamine-induced skin allergic reaction and persuade long acting selective H1 receptor antagonistic effects but its poor water solubility circumscribed its clinical application. The main objective of this research work was to improve the aqueous solubility and oral bioavailability of EBT by preparing EBT-loaded bilosomes (EBT-PC-SDC-BS). A thin film hydration method was used to prepare ebastine loaded bilosomes.
View Article and Find Full Text PDF