A new biopreparation is developed to clean soils from oil pollution in the arid climate of the Republic of Kazakhstan. The biopreparation includes bacterial strains F2-1, F2-2, and BS3701. When using the biopreparation in a liquid mineral medium with 15% crude oil, laboratory studies have revealed degradation of 48% n-alkanes and 39% of PAHs after 50 days.
View Article and Find Full Text PDFThe aim of our study was to reveal the peculiarities of the adaptation of rhodococci to hydrophobic hydrocarbon degradation at low temperatures when the substrate was in solid states. The ability of actinobacteria (strains X5 and S67) to degrade hexadecane at 10 °C (solid hydrophobic substrate) and 26 °C (liquid hydrophobic substrate) is described. Despite the solid state of the hydrophobic substrate at 10 °C, bacteria demonstrate a high level of its degradation (30-40%) within 18 days.
View Article and Find Full Text PDFDue to the extensive oil extraction and transportation that occurs in oil-producing countries, many lands remain contaminated because of accidental leakages. Despite its low cost and environmentally safe nature, bioremediation technology is not always successful, mainly because of the soil toxicity to the degrading microbial populations and plants. Here we report a three-year microfield experiment on the influence of natural sorbents of mineral (zeolite, kaolinite, vermiculite, diatomite), organic (peat), carbonaceous (biochar) origin, and a mixed sorbent ACD (composed of granular activated carbon and diatomite) on the bioremediation of grey forest soil contaminated with weathered crude oil (40.
View Article and Find Full Text PDFThe strain BS3701 was isolated from soil contaminated with coke by-product waste (Moscow Region, Russian Federation). It is capable of degrading crude oil and polycyclic aromatic hydrocarbons (PAHs). The BS3701 genome consists of a 6,337,358-bp circular chromosome and two circular plasmids (pBS1141 with 107,388 bp and pBS1142 with 54,501 bp).
View Article and Find Full Text PDFCytochemical staining and microscopy were used to study the trophic structures and cellular morphotypes that are produced during the colonization of oil-water interfaces by oil-degrading yeasts and bacteria. Among the microorganisms studied here, the yeasts (Schwanniomyces occidentalis, Torulopsis candida, Candida tropicalis, Candida lipolytica, Candida maltosa, Candida paralipolytica) and two representative bacteria (Rhodococcus sp. and Pseudomonas putida) produced exocellular structures composed of biopolymers during growth on petroleum hydrocarbons.
View Article and Find Full Text PDF