Publications by authors named "Akhlesh Jain"

Objectives: The present review aims to discuss various strategies to overcome intracellular and extracellular barriers involved in gene delivery as well as the advantages, challenges, and mechanisms of gene delivery using non-viral vectors. Additionally, patents, clinical studies, and various formulation approaches related to lipid-based carrier systems are discussed.

Methods: Data were searched and collected from Google Scholar, ScienceDirect, Pubmed, and Springer.

View Article and Find Full Text PDF

Background: Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods like injections and oral administration, including preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short halflife drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic medications. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes.

View Article and Find Full Text PDF

Overexpression of protein tyrosine phosphatase 1B (PTP1B) is the major cause of various diseases such as diabetes, obesity, and cancer. PTP1B has been identified as a negative regulator of the insulin signaling cascade, thereby causing diabetes. Numerous anti-diabetic medications based on thiazolidinedione have been successfully developed; however, 2,4-thiazolidinedione (2,4-TZD) scaffolds have been reported as potential PTP1B inhibitors for the manifestation of type 2 diabetes mellitus involving insulin resistance.

View Article and Find Full Text PDF

Protein tyrosine phosphatase 1B (PTP1B) has gained interest as a therapeutic target for type 2 diabetes and obesity. Besides metabolic signalling, PTP1B is a positive regulator of signalling pathways linked to ErbB2-induced breast tumorigenesis. Substantial evidence proves that its overexpression is involved in breast cancer, which suggests that selective PTP1B inhibition might be effective in breast cancer treatment.

View Article and Find Full Text PDF

Microsponges are polymeric delivery devices composed of porous microspheres that range in size from 5 to 300 micrometers. These have been explored for biomedical applications such as targeted drug delivery, transdermal drug delivery, anticancer drug delivery, and bone substitutes. The purpose of this study is to conduct a comprehensive analysis of recent developments and prospects for a microsponge-based drug delivery system.

View Article and Find Full Text PDF

About 2.8% of the global population are being suffered from Diabetes mellitus. Diabetes mellitus is a group of metabolic disorders that is characterized by an absolute lack of insulin and resulting in hyperglycemia.

View Article and Find Full Text PDF

Cancer is one of the most concerning diseases to humankind. Various treatment strategies are being employed for its treatment, out of which use of natural products is an essential one. Flavonoids have proven to be promising anticancer targets since decades.

View Article and Find Full Text PDF

Background: Biomedical applications of polymersomes have been explored, including drug and gene delivery, insulin delivery, hemoglobin delivery, the delivery of anticancer agents, and various diagnostic purposes.

Objectives: Polymersomes, which are self-assembled amphiphilic block copolymers, have received a lot of attention in drug delivery approaches. This review represents the methods of preparation of polymersomes, including thin-film rehydration, electroformation, double emulsion, gel-assisted rehydration, PAPYRUS method, and solvent injection methods, including various therapeutic applications of polymersomes.

View Article and Find Full Text PDF

Aromatase, a cytochrome P450 enzyme, is responsible for the conversion of androgens to estrogens, which fuel the multiplication of cancerous cells. Inhibition of estrogen biosynthesis by aromatase inhibitors (AIs) is one of the highly advanced therapeutic approach available for the treatment of estrogen-positive breast cancer. Biphenyl moiety aids lipophilicity to the conjugated scaffold and enhances the accessibility of the ligand to the target.

View Article and Find Full Text PDF

Introduction: Metformin, an anti-diabetic drug, has low bioavailability and short biological half-life. Thus, bioavailability enhancement and prolonged release of the drug are highly desirable. In this regard, we aimed to developed gastroretentive nanoparticles made of jackfruit seed starch (JFSS) loaded with metformin.

View Article and Find Full Text PDF

Background: Conventional drug delivery agents for a life-threatening disease, i.e., cancer, lack specificity towards cancer cells, producing a greater degree of side effects in the normal cells with a poor therapeutic index.

View Article and Find Full Text PDF

Breast cancer is the most frequently diagnosed cancer in women and the second most common form of cancer, causing death after lung cancer, all across the globe at an alarming rate. The level of estrogens in breast cancer tissues of postmenopausal women is 10-40 folds higher than the non-carcinogenic breast tissues. As a result of this greater level of estrogen, breast tissue becomes more prone to develop breast cancer; mainly, estradiol plays a significant role in the initiation and development of hormone-dependent breast cancer.

View Article and Find Full Text PDF

Background: Low bioavailability of anti-diabetic drugs results in the partial absorption of the drug as they are mainly absorbed from the stomach and the lower part of the GIT. Drug bioavailability of anti-diabetic drugs can be significantly increased by prolonging gastric retention time through gastro-retentive dosage form such as floating microspheres.

Objective: The study was aimed to develop and characterize resin based floating microspheres of Repaglinide and Metformin for superior and prolonged maintenance of normoglycaemia in type-2 diabetes mellitus.

View Article and Find Full Text PDF

Background: β-Cyclodextrin, a cyclic oligosaccharides having 7 macrocyclic rings of glucose subunits usually linked together by α-1,4 glycosidic bond, bears characteristic chemical structure, with an exterior portion as hydrophilic to impart water solubility and interior cavity as hydrophobic, for hosting the hydrophobic molecules.

Objective: In the present work binding affinities and interactions between various anti-cancerous drugs and β- cyclodextrin using molecular docking simulations was examined for the bioavailability enhancement of cytotoxic drugs through improved solubility for the treatment of breast cancer.

Methods: Molegro Virtual Docker, an integrated software was used for the prediction and estimation of interaction between β-cyclodextrin and anti cancerous drugs.

View Article and Find Full Text PDF

Being the second most frequent cancer, breast cancer is emerging worldwide with an alarming rate, specifically in post-menopausal women. Targeted drug delivery has been in the focus for the successful treatment of breast cancer by enhancing the drug delivery efficiency and reducing the systemic toxicity of drugs. Also, it eliminates the drawbacks associated with conventional chemotherapy, including neuropathy, memory loss, cardiotoxicity and low RBCs count.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to create a targeted drug delivery system using D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit Seed Starch Nanoparticles (JFSSNPs) to effectively treat liver cancer.
  • Liver cancer poses significant health risks and existing treatments cause side effects, highlighting the need for improved drug localization that minimizes impact on healthy tissues.
  • The developed nanoparticles showed promising results, with effective drug encapsulation and selective accumulation in the liver, demonstrating the potential for better treatment outcomes compared to conventional methods.
View Article and Find Full Text PDF

Background: It takes a lot more studies to evaluate the molecular interaction of nanoparticles with the drug, their drug delivery potential and release kinetics. Thus, we have taken in silico and in vitro approaches into account for the evaluation of the drug delivery ability of the chitosan nanoparticles.

Objective: The present work was aimed to study the interaction of chitosan nanoparticles with appropriate aromatase inhibitors using in silico tools.

View Article and Find Full Text PDF

Background: Estrogens are essential for the growth of breast cancer in the case of premenopausal as well as in postmenopausal women. However, most of the breast cancer incidences are reported in postmenopausal women and the concurrent risk surges with an increase in age. Since the enzyme aromatase catalyses essential steps in estrogen biosynthesis, Aromatase Inhibitors (AIs) are effective targeted therapy in patients with Estrogen Receptor positive (ER+) breast cancer.

View Article and Find Full Text PDF

Eudragit® polymer has been widely used in film-coating for enhancing the quality of products over other materials (e.g., shellac or sugar).

View Article and Find Full Text PDF

Background: Owing to its potential to interfere in microtubule dynamics in the mitotic phase of cell cycle and selectively induce apoptosis in cancer cells without affecting normal cells, noscapine and its synthetic analogues have been investigated by other research groups in different cell lines for their capability to be used as anti-cancer agents.

Objective: The present study is focused on the investigation of the mode of binding of noscapinoids with tubulin, prediction of target binding affinities and mapping of their spatial fingerprints (shape and electrostatic).

Methods: Molecular docking assisted alignment based 3D-QSAR was used on a dataset (43 molecules) having an inhibitory activity (IC = 1.

View Article and Find Full Text PDF

Nanotechnology has emerged strongly in most of the field of sciences at a tiny scale. At this size, atoms and molecules work differently and present a diversity of amazing and appealing applications. Pharmaceutical nanocarriers comprise nanoparticles, nanospheres, nanocapsules, nanoemulsion, nanoliposomes and nanoniosomes.

View Article and Find Full Text PDF

Helicobacter pylori infection remains challenging as it mainly colonized beneath the deep gastric mucosa and adheres to epithelial cells of the stomach. Concanavalin-A (Con-A)-conjugated gastro-retentive poly (lactic-co-glycolic acid) (PLGA) nanoparticles of acetohydroxamic acid (AHA) and clarithromycin (CLR) were prepared and evaluated under in vitro conditions. Solvent evaporation method was employed for preparation of nanoparticles and characterized for particle size distribution, surface morphology, percent drug entrapment, and in vitro drug release in simulated gastric fluid.

View Article and Find Full Text PDF

Mucoadhesive nanoparticles (NPs) could be an exciting prospect for trans-nasal insulin delivery as they have higher surface area to cover highly vascularised nasal absorptive area providing a greater concentration gradient; hence the present study makes an attempt in this regard. Starch NPs were prepared by different crosslinkers using various methodologies and were loaded with insulin. Emulsion crosslinked particles were smaller in size compared to gel method (351 vs 997 nm), and size is further reduced when epichlorohydrin is used as crosslinking agent compared to POCl3 (194 vs 810 nm).

View Article and Find Full Text PDF

The potential utility of vitamin B12 carrier system for the oral delivery of conjugated peptides/proteins and enhancement of nanoparticles (NPs) transport has been demonstrated. The present study aims to optimize the effectiveness of VB12-NPs conjugates using different levels of cross-linking, linked with different VB(12)-coatings and evaluates in animal models to investigate an efficient insulin carrier. Amino alkyl VB12 derivatives suitable for oral delivery were synthesized at 5'hydoxy ribose and e-propionamide sites via carbamate and ester/amide linkages, and were coupled to succinic acid modified dextran NPs of varied cross-linking.

View Article and Find Full Text PDF

Considering limitations of conventional insulin therapies, the present study characterizes usefulness of novel mucoadhesive multivesicular liposomes as a mucoadhesive sustained release carrier of insulin via nasal and ocular routes, thus attempts to develop non-invasive carrier system for the controlled release of bioactives. Multivesicular liposomes (MVLs) of 26-34 microm were prepared with a high protein loading (58-62%) and were coated with chitosan and carbopol. These mucoadhesive carriers were characterized by zeta potential studies, in vitro mucoadhesion test and insulin protective ability against nasal aminopeptidase.

View Article and Find Full Text PDF