Publications by authors named "Akhilesh Tyagi"

Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions.

View Article and Find Full Text PDF

In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility.

View Article and Find Full Text PDF

Overexpression of rice A20/AN1 zinc-finger protein, OsSAP10, improves water-deficit stress tolerance in Arabidopsis via interaction with multiple proteins. Stress-associated proteins (SAPs) constitute a class of A20/AN1 zinc-finger domain containing proteins and their genes are induced in response to multiple abiotic stresses. The role of certain SAP genes in conferring abiotic stress tolerance is well established, but their mechanism of action is poorly understood.

View Article and Find Full Text PDF

The Mediator complex is essential for eukaryotic transcription, yet its role and the function of its individual subunits in plants, especially in rice, remain poorly understood. Here, we investigate the function of OsMED14_2, a subunit of the Mediator tail module, in rice development. Overexpression and knockout of OsMED14_2 resulted in notable changes in panicle morphology and grain size.

View Article and Find Full Text PDF

Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool.

View Article and Find Full Text PDF

Over the last ten years, there has been a significant interest in employing (NMF) to reduce dimensionality to enable a more efficient clustering analysis in machine learning. This technique has been applied in various image processing applications within the fields of computer vision and sensor-based systems. Many algorithms exist to solve the NMF problem.

View Article and Find Full Text PDF

A spontaneous mutant of the duckweed clone no. 7796 (known as strain G3, WT) was discovered. In this mutant clone, clone no.

View Article and Find Full Text PDF

Plants possess well-developed light sensing mechanisms and signal transduction systems for regulating photomorphogenesis. ELONGATED HYPOCOTYL5 (HY5), a basic leucine zipper (bZIP) transcription factor, has been extensively characterized in dicots. In this study, we show that OsbZIP1 is a functional homolog of Arabidopsis (Arabidopsis thaliana) HY5 (AtHY5) and is important for light-mediated regulation of seedling and mature plant development in rice (Oryza sativa).

View Article and Find Full Text PDF

Background: Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR).

View Article and Find Full Text PDF

Identifying potential molecular tags for drought tolerance is essential for achieving higher crop productivity under drought stress. We employed an integrated genomics-assisted breeding and functional genomics strategy involving association mapping, fine mapping, map-based cloning, molecular haplotyping and transcript profiling in the introgression lines (ILs)- and near isogenic lines (NILs)-based association panel and mapping population of chickpea (Cicer arietinum). This combinatorial approach delineated a bHLH (basic helix-loop-helix) transcription factor, CabHLH10 (Cicer arietinum bHLH10) underlying a major QTL, along with its derived natural alleles/haplotypes governing yield traits under drought stress in chickpea.

View Article and Find Full Text PDF

The advent of the pangenome era has unraveled previously unknown genetic variation existing within diverse crop plants, including rice. This untapped genetic variation is believed to account for a major portion of phenotypic variation existing in crop plants. However, the use of conventional single reference-guided genotyping often fails to capture a large portion of this genetic variation leading to a reference bias.

View Article and Find Full Text PDF

The TrustZone technology is incorporated in a majority of recent ARM Cortex A and Cortex M processors widely deployed in the IoT world. Security critical code execution inside a so-called secure world is isolated from the rest of the application execution within a normal world. It provides hardware-isolated area called a trusted execution environment (TEE) in the processor for sensitive data and code.

View Article and Find Full Text PDF

Pollen development and its germination are obligatory for the reproductive success of flowering plants. Calcium-dependent protein kinases (CPKs, also known as CDPKs) regulate diverse signaling pathways controlling plant growth and development. Here, we report the functional characterization of a novel OsCPK29 from rice, which is mainly expressed during pollen maturation stages of the anther.

View Article and Find Full Text PDF

Seed size is one of the major determinants of seed weight and eventually, crop yield. As the global population is increasing beyond the capacity of current food production, enhancing seed size is a key target for crop breeders. Despite the identification of several genes and QTLs, current understanding about the molecular regulation of seed size/weight remains fragmentary.

View Article and Find Full Text PDF

In this paper, residue number system (RNS) based logic is proposed as a protection against power side-channel attacks. Every input to RNS logic is encrypted as a share of the original input in the residue domain through modulus values. Most existing countermeasures enhance side-channel privacy by making the power trace statistically indistinguishable.

View Article and Find Full Text PDF
Article Synopsis
  • OsJAZ11 is a JAZ protein that helps regulate phosphate homeostasis by inhibiting jasmonic acid signaling, which normally restricts root growth in rice.
  • Overexpressing OsJAZ11 in rice leads to enhanced root elongation and improved phosphate foraging while reducing the plant's response to phosphate starvation.
  • The study establishes a link between jasmonic acid and phosphate signaling, suggesting that manipulating JAZ repressors could enhance low phosphate tolerance in rice crops.
View Article and Find Full Text PDF

Rice occupies a pre-eminent position as a food crop in the world. Its production, how- ever, entails up to 3000 liters of water per kilogram of grain produced. Such high demand makes rice prone to drought easily.

View Article and Find Full Text PDF

Many quantitative trait loci (QTLs) have been identified by molecular genetic studies which control grain size by regulating grain width, length, and/or thickness. () is one such QTL that codes for a RING-type E3 ubiquitin ligase and increases grain size by regulating grain width through ubiquitin-mediated degradation of unknown substrates. A natural variation (single-nucleotide polymorphism at the 346 position) in the functional domain-coding region of in rice genotypes has been shown to cause an increase in grain width/weight in rice.

View Article and Find Full Text PDF

Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions.

View Article and Find Full Text PDF

Nuclear proteins are primarily regulatory factors governing gene expression. Multiple factors determine the localization of a protein in the nucleus. An upright identification of nuclear proteins is way far from accuracy.

View Article and Find Full Text PDF

We present here a tribute to Satish Chandra Maheshwari (known to many as SCM, or simply Satish), one of the greatest plant biologists of our time. He was born on October 4, 1933, in Agra, Uttar Pradesh, India, and passed away in Jaipur, Rajasthan, India, on June 12, 2019. He is survived by two of his younger sisters (Sushila Narsimhan and Saubhagya Agrawal), a large number of friends and students from around the world.

View Article and Find Full Text PDF

Rice grain size and weight are major determinants of grain quality and yield and so have been under rigorous selection since domestication. However, the genetic basis for contrasting grain size/weight trait among Indian germplasms and their association with domestication-driven evolution is not well understood. In this study, two long (LGG) and two short grain (SGG) genotypes were resequenced.

View Article and Find Full Text PDF

Mediator, a multisubunit co-activator complex, regulates transcription in eukaryotes and is involved in diverse processes in Arabidopsis through its different subunits. Here, we have explored developmental aspects of one of the rice Mediator subunit gene OsMED14_1. We analyzed its expression pattern through RNA in situ hybridization and pOsMED14_1:GUS transgenics that showed its expression in roots, leaves, anthers and seeds prominently at younger stages, indicating possible involvement of this subunit in multiple aspects of rice development.

View Article and Find Full Text PDF

Identification of genetic basis for important agronomic traits is essential for marker-assisted crop improvement. Linkage mapping is one of the most popular approaches utilized for identification of major quantitative trait loci (QTLs) governing important agronomic traits in cereals. However, the identified QTLs usually span large genomic intervals and very few of these are subsequently fine mapped to single major effect gene.

View Article and Find Full Text PDF