Publications by authors named "Akhil R Peeketi"

Liquid crystal elastomer (LCE) actuators are generally limited in shape, size, and quantity by the need for aligning via stretching and fixing via photopolymerizing. A thermoplastic LCE is presented that may be vacuum thermoformed into centimeter-sized hemispheres. The scalable industrial process induces LCE alignment without requiring postfixing.

View Article and Find Full Text PDF

We use molecular dynamics simulations to unravel the physics underpinning the light-induced density changes caused by the dynamic trans-cis-trans isomerization cycles of azo-mesogens embedded in a liquid crystal polymer network, an intriguing experimental observation reported in the literature. We employ two approaches, cyclic and probabilistic switching of isomers, to simulate dynamic isomerization. The cyclic switching of isomers confirms that dynamic isomerization can lead to density changes at specific switch-time intervals.

View Article and Find Full Text PDF

Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations.

View Article and Find Full Text PDF

We describe photo-thermo-mechanical actuation and its dynamics in thin films of a liquid crystal networks (LCN) under near infrared (NIR) illumination through experiments and simulations. Splay aligned films of different thicknesses (25 μm to 100 μm) were obtained by crosslinking a mixture of mono-functional and bi-functional liquid crystal monomers. The NIR-driven thermo-mechanical actuation was achieved by adding an NIR dye to the monomer mixture.

View Article and Find Full Text PDF

Soft actuators allowing multifunctional, multishape deformations based on single polymer films or bilayers remain challenging to produce. In this contribution, direct ink writing is used for generating patterned actuators, which are in between single- and bilayer films, with multifunctionality and a plurality of possible shape changes in a single object. The key is to use the controlled deposition of a light-responsive liquid crystal ink with direct ink writing to partially cover a foil at strategic locations.

View Article and Find Full Text PDF

Liquid crystal polymers are a special class of soft materials that can change their shape in response to numerous stimuli such as light, heat, electric field, and chemicals. The ability to tailor the deformed shape by tuning the alignment of mesogens across the film has enabled the researchers to generate unique motions from these liquid crystal polymer thin films. Simulating such motions might allow us to understand the underlying mechanisms better and could lead to novel designs.

View Article and Find Full Text PDF

Achieving oscillatory motion in polymers without requiring on/off switching of stimuli is a current challenge. Hereby, a free-standing liquid crystal polymer (LCP) is demonstrated to undergo a sustained oscillatory motion when triggered by light, moving back and forth, resembling the motion of a rocking-chair. Two polymer films having different azobenzene photo-switches have been studied, revealing photoswitch requirements as well as illumination conditions necessary to sustain oscillations.

View Article and Find Full Text PDF

A triangular shaped liquid crystal network is shown to undergo a continual, rocking chair-like oscillatory chaotic motion upon exposure to a surface of constant temperature. With the addition of an azobenzene chromophore, dual response is achieved, extending the actuation freedom towards a film that shows rocking and rolling motion.

View Article and Find Full Text PDF

Liquid crystalline networks have been fashioned into thin films with tapered thicknesses, revealing the possibility of rolling up extremely tightly when triggered thermally or with light. Compared to the often limited bending shown previously in liquid crystal network actuators, these tapered films curl up several hundreds of degrees. Finite element results of simulated functionally graded thin films with tapered thicknesses corroborate well with experimental work.

View Article and Find Full Text PDF