Publications by authors named "Akhil Kottaram"

Cannabis use is associated with brain functional changes in regions implicated in prominent neuroscientific theories of addiction. Emerging evidence suggests that cannabidiol (CBD) is neuroprotective and may reverse structural brain changes associated with prolonged heavy cannabis use. In this study, we examine how an ∼10-week exposure of CBD in cannabis users affected resting-state functional connectivity in brain regions functionally altered by cannabis use.

View Article and Find Full Text PDF

The potential of normative modeling to make individualized predictions from neuroimaging data has enabled inferences that go beyond the case-control approach. However, site effects are often confounded with variables of interest in a complex manner and can bias estimates of normative models, which has impeded the application of normative models to large multi-site neuroimaging data sets. In this study, we suggest accommodating for these site effects by including them as random effects in a hierarchical Bayesian model.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied ways to predict if teenagers might develop depression by looking at different factors like their health, life experiences, and brain scans.
  • They used data from a big study called the IMAGEN study, where they followed some teens for 2 to 5 years.
  • The results showed they could predict depression in teens pretty well, using things like whether they had stress in their lives, their personality types, and some brain measurements.
View Article and Find Full Text PDF

In a machine learning setting, this study aims to compare the prognostic utility of connectomic, brain structural, and clinical/demographic predictors of individual change in symptom severity in individuals with schizophrenia. Symptom severity at baseline and 1-year follow-up was assessed in 30 individuals with a schizophrenia-spectrum disorder using the Brief Psychiatric Rating Scale. Structural and functional neuroimaging was acquired in all individuals at baseline.

View Article and Find Full Text PDF

Complex human behavior emerges from dynamic patterns of neural activity that transiently synchronize between distributed brain networks. This study aims to model the dynamics of neural activity in individuals with schizophrenia and to investigate whether the attributes of these dynamics associate with the disorder's behavioral and cognitive deficits. A hidden Markov model (HMM) was inferred from resting-state functional magnetic resonance imaging (fMRI) data that was temporally concatenated across individuals with schizophrenia (n = 41) and healthy comparison individuals (n = 41).

View Article and Find Full Text PDF

Correlation in functional MRI activity between spatially separated brain regions can fluctuate dynamically when an individual is at rest. These dynamics are typically characterized temporally by measuring fluctuations in functional connectivity between brain regions that remain fixed in space over time. Here, dynamics in functional connectivity were characterized in both time and space.

View Article and Find Full Text PDF