Publications by authors named "Akhil Banerjea"

Japanese Encephalitis Virus (JEV), a member virus of Flaviviridae family causes Japanese encephalitis (JE). JE is a mosquito-borne disease, spread mainly by Culex spp. During JE, dysregulated inflammatory responses play a central role in neuronal death and damage leading to Neuroinflammation.

View Article and Find Full Text PDF

The pathogenesis and host-viral interactions of the Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) are convoluted and not well evaluated. Application of the multi-omics system biology approaches, including biological network analysis in elucidating the complex host-viral response, interrogates the viral pathogenesis. The present study aimed to fingerprint the system-level alterations during acute CCHFV-infection and the cellular immune responses during productive CCHFV-replication in vitro.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) has RNA genome and depends on host cellular machinery for most of its activities. Host cellular proteins modulate the expression and activity of viral proteins to combat the virus. HIV-1 proteins are known to regulate each other for the benefit of virus by exploiting these modulations.

View Article and Find Full Text PDF

HIV-1 encodes accessory proteins that neutralize antiviral restriction factors to ensure its successful replication. One accessory protein, the HIV-1 viral infectivity factor (Vif), is known to promote ubiquitination and proteasomal degradation of the antiviral restriction factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G), a cytosine deaminase that leads to hypermutations in the viral DNA and subsequent aberrant viral replication. We have previously demonstrated that the HIV-1 viral transcription mediator Tat activates the host progrowth PI-3-AKT pathway, which in turn promotes HIV-1 replication.

View Article and Find Full Text PDF

Despite successful combination antiretroviral therapy (cART), persistent low-grade immune activation together with inflammation and toxic antiretroviral drugs can lead to long-lasting metabolic flexibility and adaptation in people living with HIV (PLWH). Our study investigated alterations in the plasma metabolic profiles by comparing PLWH on long-term cART(>5 years) and matched HIV-negative controls (HC) in two cohorts from low- and middle-income countries (LMIC), Cameroon, and India, respectively, to understand the system-level dysregulation in HIV-infection. Using untargeted and targeted LC-MS/MS-based metabolic profiling and applying advanced system biology methods, an altered amino acid metabolism, more specifically to glutaminolysis in PLWH than HC were reported.

View Article and Find Full Text PDF

COVID-19 caused by SARS-CoV-2 is the latest pandemic which has thrown the world into an unprecedented social and economic uncertainties along with huge loss to humanity. Identification of the host factors regulating the replication of SARS-CoV-2 in human host may help in the development of novel anti-viral therapies to combat the viral infection and spread. Recently, some research groups used genome-wide CRISPR/Cas screening to identify the host factors critical for the SARS-CoV-2 replication and infection.

View Article and Find Full Text PDF

Dengue virus (DENV) infection can cause either self-limited dengue fever or hemorrhagic complications. Low platelet count is one of the manifestations of dengue fever. Megakaryocytes are the sole producers of platelets.

View Article and Find Full Text PDF

HIV-1 accessory protein Vif is required for neutralization of cellular restriction factor APOBEC3G through its ubiquitination and proteasomal degradation which allows replication of HIV-1 in non-permissive cells. This function of Vif is required for maintaining the genomic integrity of HIV-1. We here report that the Vif interacts with the cellular E3 ubiquitin ligase CHIP and the level of Vif protein gets reduced by the expression of CHIP.

View Article and Find Full Text PDF

SARS-CoV-2, the novel coronavirus infection has consistently shown an association with neurological anomalies in patients, in addition to its usual respiratory distress syndrome. Multi-organ dysfunctions including neurological sequelae during COVID-19 persist even after declining viral load. We propose that SARS-CoV-2 gene product, Spike, is able to modify the host exosomal cargo, which gets transported to distant uninfected tissues and organs and can initiate a catastrophic immune cascade within Central Nervous System (CNS).

View Article and Find Full Text PDF

Acquired immunodeficiency syndrome is a pandemic disease due to increased variability in causative agent in global distribution; it is attributed to various complications in developing the vaccine, namely, error-prone reverse transcriptase, rapid replication, and high recombination rate. Vpu downmodulates CD4 in infected cells, and it targets the newly synthesized CD4 molecules from the endoplasmic reticulum. The aim of this study was to identify the level of genetic changes in the gene from HIV-1-infected North Indian individuals and determine the functional relevance with respect to the CD4 downregulation potential of this protein.

View Article and Find Full Text PDF

Neurological disorders caused by neuroviral infections are an obvious pathogenic manifestation. However, non-neurotropic viruses or peripheral viral infections pose a considerable challenge as their neuropathological manifestations do not emerge because of primary infection. Their secondary or bystander pathologies develop much later, like a syndrome, during and after the recovery of patients from the primary disease.

View Article and Find Full Text PDF

Dengue virus (DENV) infection disrupts host innate immune signaling at various checkpoints. Cellular levels and stability of intermediate signaling molecules are a crucial hijacking point for a successful viral pathogenesis. Stability and turnover of all the cellular proteins including intermediate signaling molecules are principally regulated by proteasomal degradation pathway.

View Article and Find Full Text PDF

Human Immunodeficiency Virus-1 (HIV-1) Nef promotes p53 protein degradation to protect HIV-1 infected cells from p53 induced apoptosis. We found that Nef mediated p53 degradation is accomplished through ubiquitin proteasome pathway in an Mdm2-independent manner. By GST pulldown and immunoprecipitation assays, we have shown that Nef interacts with E3 ubiquitin ligase E6AP in both Nef transfected HEK-293T cells and HIV-1 infected MOLT3 cells.

View Article and Find Full Text PDF

Dengue virus (DENV), a member of Flaviviridae family, has become neurovirulent in humans after rapid geographical expansion. Host proteasomal machinery contains both ubiquitin ligases as well as deubiquitinases (DUBs), known to influence key cellular and biological functions. MicroRNA-mediated modulations of DUBs in case of DENV infections have not been explored yet.

View Article and Find Full Text PDF

Dengue fever is one of those unique diseases where host immune responses largely determine the pathogenesis and its severity. Earlier studies have established the fact that dengue virus (DENV) infection causes haemorrhagic fever and shock syndrome, but it is not directly responsible for exhibiting these clinical symptoms. It is noteworthy that clinically, vascular leakage syndrome does not develop for several days after infection despite a robust innate immune response that elicits the production of proinflammatory and proangiogenic cytokines.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) is a global health concern affecting millions of individuals with a wide variety of currently circulating subtypes affecting various regions of the globe. HIV relies on multiple regulatory proteins to modify the host cell to promote replication in infected T cells, and these regulatory proteins can have subtle phenotypic differences between subtypes. One of these proteins, HIV-1 Trans-Activator of Transcription (Tat), is capable of RNA interference (RNAi) Silencing Suppressor (RSS) activity and induction of cell death in T cells.

View Article and Find Full Text PDF

C-C chemokine receptor type 5 (CCR5) serves as a co-receptor for Human immunodeficiency virus (HIV), enabling the virus to enter human CD4 T cells and macrophages. In the absence of CCR5, HIV strains that require CCR5 (R5 or M-tropic HIV) fail to successfully initiate infection. Various natural mutations of the CCR5 gene have been reported to interfere with the HIV-CCR5 interaction, which influences the rate of AIDS progression.

View Article and Find Full Text PDF

Human immunodeficiency virus-1 (HIV-1) Tat is degraded in the host cell both by proteasomal and lysosomal pathways, but the specific molecules that engage with Tat from these pathways are not known. Because E3 ubiquitin ligases are the primary determinants of substrate specificity within the ubiquitin-dependent proteasomal degradation of proteins, we first sought to identify the E3 ligase associated with Tat degradation. Based on the intrinsic disordered nature of Tat protein, we focused our attention on host cell E3 ubiquitin ligase CHIP (C terminus of HSP70-binding protein).

View Article and Find Full Text PDF

Human Immunodeficiency Virus-1 (HIV-1) is known to induce the expression of SOCS3 which is a negative feed-back regulator of inflammatory responses. Here, we demonstrate that reactivation of latent HIV-1 leads to degradation of SOCS3 at early time points. Interestingly, SOCS3 degradation following transfection of HIV-1 RNA as well as polyIC in THP-1 cells further confirmed the role of viral RNA signaling in SOCS3 biology.

View Article and Find Full Text PDF

Proteasomal degradation pathways play a central role in regulating a variety of protein functions by controlling not only their turnover but also the physiological behavior of the cell. This makes it an attractive target for the pathogens, especially viruses which rely on the host cellular machinery for their propagation and pathogenesis. Viruses have evolutionarily developed various strategies to manipulate the host proteasomal machinery thereby creating a cellular environment favorable for their own survival and replication.

View Article and Find Full Text PDF

Despite the high success rate, antiretroviral therapy does not cure the disease completely due to presence of latent viral reservoirs. Although several studies have addressed this issue earlier, the role of serum starvation/deprivation in HIV-1 latency has not been studied. So, we investigated the role of serum starvation in regulating HIV-1 latency.

View Article and Find Full Text PDF

The infectious salmon anaemia virus (ISAV) is a piscine virus, a member of Orthomyxoviridae family. It encodes at least 10 proteins from eight negative-strand RNA segments. Since ISAV belongs to the same virus family as Influenza A virus, with similarities in protein functions, they may hence be characterised by analogy.

View Article and Find Full Text PDF

HIV-1 Tat transactivates viral genes through strong interaction with TAR RNA. The stem-loop bulged region of TAR consisting of three nucleotides at the position 23-25 and the loop region consisting of six nucleotides at the position 30-35 are essential for viral transactivation. The arginine motif of Tat (five arginine residues on subtype TatC) is critically important for TAR interaction.

View Article and Find Full Text PDF

HIV-1 evades host defense through mutations and recombination events, generating numerous variants in an infected patient. These variants with an undiminished virulence can multiply rapidly in order to progress to AIDS. One of the targets to intervene in HIV-1 replication is the -activator of transcription (Tat), a major regulatory protein that transactivates the long terminal repeat promoter through its interaction with -activation response (TAR) RNA.

View Article and Find Full Text PDF