Background: Among patients with structural heart disease with ventricular tachycardia (VT) refractory to medical therapy and catheter ablation, cardiac stereotactic body radiotherapy (SBRT) is a paradigm-changing treatment option.
Aims: To assess the efficacy of cardiac SBRT in refractory VT by comparing the rates of VT episodes, anti-tachycardia pacing (ATP) therapies, and implantable cardioverter-defibrillator (ICD) shocks post-SBRT with pre-SBRT.
Methods: We performed a comprehensive literature search and included all clinical studies reporting outcomes on cardiac SBRT for VT.
LATTICE, a spatially fractionated radiation therapy (SFRT) modality, is a 3D generalization of GRID and delivers highly modulated peak-valley spatial dose distribution to tumor targets, characterized by peak-to-valley dose ratio (PVDR). Proton LATTICE is highly desirable, because of the potential synergy of the benefit from protons compared to photons, and the benefit from LATTICE compared to GRID. Proton LATTICE using standard proton RT via intensity modulated proton therapy (IMPT) (with a few beam angles) can be problematic with poor target dose coverage and high dose spill to organs-at-risk (OAR).
View Article and Find Full Text PDFStandard-of-care treatment for Glioblastoma Multiforme (GBM) is comprised of surgery and adjuvant chemoradiation. Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated disease-modifying activity in GBM and holds great promise. Radiation, a standard-of-care treatment for GBM, has well-known immunomodulatory properties and may overcome the immunosuppressive tumor microenvironment (TME); however, radiation dose optimization and integration with CAR T cell therapy is not well defined.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cells are at the forefront of oncology. A CAR is constructed of a targeting domain (usually a single chain variable fragment, scFv), with an accompanying intra-chain linker, followed by a hinge, transmembrane, and costimulatory domain. Modification of the intra-chain linker and hinge domain can have a significant effect on CAR-mediated killing.
View Article and Find Full Text PDFGliomas are the most common primary brain tumors in adults and carry a dismal prognosis for patients. Current standard-of-care for gliomas is comprised of maximal safe surgical resection following by a combination of chemotherapy and radiation therapy depending on the grade and type of tumor. Despite decades of research efforts directed towards identifying effective therapies, curative treatments have been largely elusive in the majority of cases.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2023
Purpose: There is currently no curative treatment for patients diagnosed with triple-negative breast cancer brain metastases (TNBC-BM). CAR T cells hold potential for curative treatment given they retain the cytolytic activity of a T cell combined with the specificity of an antibody. In this proposal we evaluated the potential of EGFR re-directed CAR T cells as a therapeutic treatment against TNBC cells in vitro and in vivo.
View Article and Find Full Text PDFBackground: The purpose of this study was to determine the effects of time from diagnosis to treatment (TTI) on survival in patients with nonmetastatic non-small-cell lung cancer (NSCLC).
Materials And Methods: The National Cancer Database was queried for patients with stages 1 to 3 NSCLC between 2004 and 2013. Patients with missing survival status/time, unknown TTI, or receipt of palliative therapy were excluded.
M5A is a humanized monoclonal antibody (mAb) directed against carcinoembryonic antigen (CEA) The purpose of this first in human phase I dose-escalation trial was to characterize the toxicities and determine the maximum tolerated dose (MTD) of yttrium-90 (Y)-DOTA-M5A as a single agent and in combination with gemcitabine (gem). Patients with advanced metastatic CEA-producing malignancies who had progressed on standard therapies were first administered indium-111 (In)-DOTA-M5A. If tumor targeting was observed, the patient then received the therapy dose of Y-DOTA-M5A.
View Article and Find Full Text PDFMalignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells.
View Article and Find Full Text PDFObjectives: The treatment of choice for locally advanced cervical cancer is definitive chemoradiation (CRT). Hysterectomy is not indicated due to higher-rates of cut-through resections leaving gross disease behind, requiring additional therapy with increasing morbidity and no benefit in overall survival (OS). The objectives of this study were to determine factors associated with cut-through hysterectomies and evaluate OS outcomes.
View Article and Find Full Text PDFAerobic glycolysis (the Warburg effect) is a core hallmark of cancer, but the molecular mechanisms underlying it remain unclear. Here, we identify an unexpected central role for mTORC2 in cancer metabolic reprogramming where it controls glycolytic metabolism by ultimately regulating the cellular level of c-Myc. We show that mTORC2 promotes inactivating phosphorylation of class IIa histone deacetylases, which leads to the acetylation of FoxO1 and FoxO3, and this in turn releases c-Myc from a suppressive miR-34c-dependent network.
View Article and Find Full Text PDFPurpose: mTOR pathway hyperactivation occurs in approximately 90% of glioblastomas, but the allosteric mTOR inhibitor rapamycin has failed in the clinic. Here, we examine the efficacy of the newly discovered ATP-competitive mTOR kinase inhibitors CC214-1 and CC214-2 in glioblastoma, identifying molecular determinants of response and mechanisms of resistance, and develop a pharmacologic strategy to overcome it.
Experimental Design: We conducted in vitro and in vivo studies in glioblastoma cell lines and an intracranial model to: determine the potential efficacy of the recently reported mTOR kinase inhibitors CC214-1 (in vitro use) and CC214-2 (in vivo use) at inhibiting rapamycin-resistant signaling and blocking glioblastoma growth and a novel single-cell technology-DNA Encoded Antibody Libraries-was used to identify mechanisms of resistance.
Alternative splicing contributes to diverse aspects of cancer pathogenesis including altered cellular metabolism, but the specificity of the process or its consequences are not well understood. We characterized genome-wide alternative splicing induced by the activating EGFRvIII mutation in glioblastoma (GBM). EGFRvIII upregulates the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 splicing factor, promoting glycolytic gene expression and conferring significantly shorter survival in patients.
View Article and Find Full Text PDFUnlabelled: Acquired resistance to tyrosine kinase inhibitors (TKI) represents a major challenge for personalized cancer therapy. Multiple genetic mechanisms of acquired TKI resistance have been identified in several types of human cancer. However, the possibility that cancer cells may also evade treatment by co-opting physiologically regulated receptors has not been addressed.
View Article and Find Full Text PDFThe sterol regulatory element-binding proteins (SREBP) are key transcriptional regulators of lipid metabolism and cellular growth. It has been proposed that SREBP signaling regulates cellular growth through its ability to drive lipid biosynthesis. Unexpectedly, we find that loss of SREBP activity inhibits cancer cell growth and viability by uncoupling fatty acid synthesis from desaturation.
View Article and Find Full Text PDFThe interaction of tumor cells with the tumor vasculature is mainly studied for its role in tumor angiogenesis and intravascular metastasis of circulating tumor cells. In addition, a specific interaction of tumor cells with the abluminal surfaces of vessels, or angiotropism, may promote the migration of angiotropic tumor cells along the abluminal vascular surfaces in a pericytic location. This process has been termed extravascular migratory metastasis.
View Article and Find Full Text PDFUnlabelled: Although it is known that mTOR complex 2 (mTORC2) functions upstream of Akt, the role of this protein kinase complex in cancer is not well understood. Through an integrated analysis of cell lines, in vivo models, and clinical samples, we demonstrate that mTORC2 is frequently activated in glioblastoma (GBM), the most common malignant primary brain tumor of adults. We show that the common activating epidermal growth factor receptor (EGFR) mutation (EGFRvIII) stimulates mTORC2 kinase activity, which is partially suppressed by PTEN.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common malignant primary brain tumor of adults and one of the most lethal of all cancers. Epidermal growth factor receptor (EGFR) mutations (EGFRvIII) and phosphoinositide 3-kinase (PI3K) hyperactivation are common in GBM, promoting tumor growth and survival, including through sterol regulatory element-binding protein 1 (SREBP-1)-dependent lipogenesis. The role of cholesterol metabolism in GBM pathogenesis, its association with EGFR/PI3K signaling, and its potential therapeutic targetability are unknown.
View Article and Find Full Text PDFA common mutation of the epidermal growth factor receptor in glioma is the de2-7EGFR (or EGFRvIII). Glioma cells expressing de2-7EGFR contain an intracellular pool of receptor with high levels of mannose glycosylation, which is consistent with delayed processing. We now show that this delay occurs in the Golgi complex.
View Article and Find Full Text PDFPhosphatidyl-inositol-3 kinases (PI3Ks) constitute a family of intracellular lipid kinases that are frequently hyperactivated in glioblastoma. The PI3K complex links growth factor signaling with cellular proliferation, differentiation, metabolism, and survival. Mammalian target of rapamycin (mTOR) acts both as a downstream effector and upstream regulator of PI3K, thus highlighting its importance in glioblastoma.
View Article and Find Full Text PDFGlioblastoma, the most common malignant brain tumor, is among the most lethal and difficult cancers to treat. Although epidermal growth factor receptor (EGFR) mutations are frequent in glioblastoma, their clinical relevance is poorly understood. Studies of tumors from patients treated with the EGFR inhibitor lapatinib revealed that EGFR induces the cleavage and nuclear translocation of the master transcriptional regulator of fatty acid synthesis, sterol regulatory element-binding protein 1 (SREBP-1).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2005
An IL-4 antagonist was designed based on structural and biochemical analysis of unbound IL-4 and IL-4 in complex with its high-affinity receptor (IL-4Ralpha). Our design strategy sought to capture a protein-protein interaction targeting the high affinity that IL-4 has for IL-4Ralpha. This strategy has impact due to the potential relevance of IL-4Ralpha as a drug target in the treatment of asthma.
View Article and Find Full Text PDF