Surface plasmons offer a promising avenue in the pursuit of swift and localized manipulation of magnetism for advanced magnetic storage and information processing technology. However, observing and understanding spatiotemporal interactions between surface plasmons and spins remains challenging, hindering optimal optical control of magnetism. Here, we demonstrate the spatiotemporal observation of patterned ultrafast demagnetization dynamics in permalloy mediated by propagating surface plasmon polaritons with sub-picosecond time- and sub-μm spatial- scales by employing Lorentz ultrafast electron microscopy combined with excitation through transient optical gratings.
View Article and Find Full Text PDFHigh-Arctic environments are facing an elevated pace of warming and increasing human activities, making them more susceptible to the introduction and spread of alien species. We investigated the role of human disturbance in facilitating the spread of a native plant () in a high-Arctic natural environment close to Isfjord Radio station and along adjacent hiking trails at Kapp Linné, Svalbard. We reconstructed the spatial pattern of the arrival and spread of at Kapp Linné by combining historical records of the species occurrence (1928-2018) with a contemporary survey of the plant abundance along the main hiking trail (2023 survey) and tested the relative effects of altitude and proximity to hiking trails on the species density via a generalised linear model (GLM).
View Article and Find Full Text PDFThis study demonstrates the controllable switching of skyrmion helicity using spin-orbit torque, enhanced by thermal effects. Electric current pulses applied to a [Pt/Co]/Ru/[Co/Pt] multilayer stripe drive skyrmions in a direction opposite to the current flow. Continuous pulsing results in an unexpected reversal of skyrmion motion.
View Article and Find Full Text PDFNanoscale Horiz
September 2024
Coherent optical detection is a powerful technique for characterizing a wide range of physical excitations. Here, we use two optical approaches (fundamental and parametric pumping) to microscopically characterize the high-frequency auto-oscillations of single and multiple nano-constriction spin Hall nano-oscillators (SHNOs). To validate the technique and demonstrate its robustness, we study SHNOs made from two different material stacks, NiFe/Pt and W/CoFeB/MgO, and investigate the influence of both the RF injection power and the laser power on the measurements, comparing the optical results to conventional electrical measurements.
View Article and Find Full Text PDFThe unique electronic properties of topological quantum materials, such as protected surface states and exotic quasiparticles, can provide an out-of-plane spin-polarized current needed for external field-free magnetization switching of magnets with perpendicular magnetic anisotropy. Conventional spin-orbit torque (SOT) materials provide only an in-plane spin-polarized current, and recently explored materials with lower crystal symmetries provide very low out-of-plane spin-polarized current components, which are not suitable for energy-efficient SOT applications. Here, we demonstrate a large out-of-plane damping-like SOT at room temperature using the topological Weyl semimetal candidate TaIrTe with a lower crystal symmetry.
View Article and Find Full Text PDFWe demonstrate magnetic droplet soliton pairs in all-perpendicular spin-torque nano-oscillators (STNOs), where one droplet resides in the STNO free layer (FL) and the other in the reference layer (RL). Typically, theoretical, numerical, and experimental droplet studies have focused on the FL, with any additional dynamics in the RL entirely ignored. Here we show that there is not only significant magnetodynamics in the RL, but the RL itself can host a droplet driven by, and coexisting with, the FL droplet.
View Article and Find Full Text PDFSkyrmions, swirling spin textures with topologically protected stability and low critical driven-current density, can be generated from the stripe domain with current pulses, bringing them closer to practical applications in racetrack memory. However, the mechanism of this topological transition from the stripe domain to the skyrmion remains unclear because the transition process occurs at a nanosecond timescale, giving rise to difficulties in observing this process using imaging tools. In this study, we controlled the domain wall - skyrmion transition by combining Joule heating with spin-orbit torque (SOT) and experimentally observed the details of this process, by which we confirmed the mechanism: the spatial variation of the topological charge density induces half skyrmions branching from the stripe domains, and these half skyrmions overcome the surface tension and break away from the stripe domain, resulting in the generation of skyrmions.
View Article and Find Full Text PDFFe[Formula: see text]Sn[Formula: see text] is a topological kagome ferromagnet that possesses numerous Weyl points close to the Fermi energy, which can manifest various unique transport phenomena such as chiral anomaly, anomalous Hall effect, and giant magnetoresistance. However, the magnetodynamic properties of Fe[Formula: see text]Sn[Formula: see text] have not yet been explored. Here, we report, for the first time, the measurements of the intrinsic Gilbert damping constant ([Formula: see text]), and the effective spin mixing conductance (g[Formula: see text]) of Pt/Fe[Formula: see text]Sn[Formula: see text] bilayers for Fe[Formula: see text]Sn[Formula: see text] thicknesses down to 2 nm, for which [Formula: see text] is [Formula: see text], and g[Formula: see text] is [Formula: see text].
View Article and Find Full Text PDFNano-constriction based spin Hall nano-oscillators (SHNOs) are at the forefront of spintronics research for emerging technological applications, such as oscillator-based neuromorphic computing and Ising Machines. However, their miniaturization to the sub-50 nm width regime results in poor scaling of the threshold current. Here, it shows that current shunting through the Si substrate is the origin of this problem and studies how different seed layers can mitigate it.
View Article and Find Full Text PDFMutual synchronization of serially connected spintronic nano-oscillators boosts their coherence by and peak power by . Increasing the number of synchronized nano-oscillators in chains holds significance for improved signal quality and emerging applications such as oscillator based unconventional computing. We successfully fabricate spin Hall nano-oscillator chains with up to 50 serially connected nanoconstrictions using W/NiFe, W/CoFeB/MgO, and NiFe/Pt stacks.
View Article and Find Full Text PDFSkyrmions and skyrmioniums are topologically non-trivial spin textures found in chiral magnetic systems. Understanding the dynamics of these particle-like excitations is crucial for leveraging their diverse functionalities in spintronic devices. This study investigates the dynamics and evolution of chiral spin textures in [Pt/Co]/Ru/[Co/Pt] multilayers with ferromagnetic interlayer exchange coupling.
View Article and Find Full Text PDFSpin-torque nano-oscillators (STNOs) are a type of nanoscale microwave auto-oscillators utilizing spin-torque to generate magnetodynamics with great promise for applications in microwaves, magnetic memory, and neuromorphic computing. Here, we report the first demonstration of exchange-spring STNOs, with an exchange-spring ([Co/Pd]-Co) reference layer and a perpendicular ([Co/Ni]) free layer. This magnetic configuration results in high-frequency (>10 GHz) microwave emission at a zero magnetic field and exchange-spring dynamics in the reference layer and the observation of magnetic droplet solitons in the free layer at different current polarities.
View Article and Find Full Text PDFPurpose: Partial rotator cuff tears can cause shoulder pain and dysfunction and are more common than complete tears. However, few studies examine partial injuries in small animals and, therefore a robust, clinically relevant model may be lacking. This study aimed to fully characterize the established rat model of partial rotator cuff injury over time and determine if it models human partial rotator cuff tears.
View Article and Find Full Text PDFBackground: Our aim in this study was to explore the lived experience of adults living with type 1 and type 2 diabetes through an intersectional sex- and gender-based analysis plus lens.
Methods: Qualitative interviews with 15 adults (9 women, 6 men) were conducted in February and March 2021. Interviews were recorded, transcribed and analyzed for semantic and latent themes noting differences in participants' accounts of living with diabetes by gender, age, race and ethnicity, type of diabetes and other key demographics.
The interfacial Dzyaloshinskii-Moriya Interaction (iDMI) is an antisymmetric exchange interaction that is induced by the broken inversion symmetry at the interface of, e.g., a ferromagnet/heavy metal.
View Article and Find Full Text PDFMagnetic force microscopy (MFM) is a powerful technique for studying magnetic microstructures and nanostructures that relies on force detection by a cantilever with a magnetic tip. The detected magnetic tip interactions are used to reconstruct the magnetic structure of the sample surface. Here, we demonstrate a new method using MFM for probing the spatial profile of an operational nanoscale spintronic device, the spin Hall nano-oscillator (SHNO), which generates high-intensity spin wave auto-oscillations enabling novel microwave applications in magnonics and neuromorphic computing.
View Article and Find Full Text PDFMagnetic droplets are non-topological magnetodynamical solitons displaying a wide range of complex dynamic phenomena with potential for microwave signal generation. Bubbles, on the other hand, are internally static cylindrical magnetic domains, stabilized by external fields and magnetostatic interactions. In its original theory, the droplet was described as an imminently collapsing bubble stabilized by spin transfer torque and, in its zero-frequency limit, as equivalent to a bubble.
View Article and Find Full Text PDFWe demonstrate an optimized fabrication process for electric field (voltage gate) controlled nano-constriction spin Hall nano-oscillators (SHNOs), achieving feature sizes of <30 nm with easy to handle ma-N 2401 e-beam lithography negative tone resist. For the nanoscopic voltage gates, we utilize a two-step tilted ion beam etching approach and through-hole encapsulation using 30 nm HfO. The optimized tilted etching process reduces sidewalls by 75% compared to no tilting.
View Article and Find Full Text PDFSynchronization of large spin Hall nano-oscillator (SHNO) arrays is an appealing approach toward ultrafast non-conventional computing. However, interfacing to the array, tuning its individual oscillators and providing built-in memory units remain substantial challenges. Here, we address these challenges using memristive gating of W/CoFeB/MgO/AlO-based SHNOs.
View Article and Find Full Text PDFBackground: While there is an increasing burden of chronic postoperative opioid use and opioid abuse in the United States, opioid use following inflatable penile prosthesis (IPP) surgery has not been well described.
Aim: Describe postoperative opioid use following IPP surgery.
Methods: Seventy-four consecutive patients undergoing IPP implantation by a single surgeon were enrolled.
We study the optical-pump induced ultrafast transient change of x-ray absorption at absorption resonances of the transition metals Ni and Fe in the FeNi alloy. We find the effect for both elements to occur simultaneously on a femtosecond timescale. This effect may hence be used as a handy cross correlation scheme, providing a time-zero reference for ultrafast optical-pump soft x-ray-probe measurement.
View Article and Find Full Text PDFPurpose: To describe the objectives, methods and expected impact of an international consortium (iKASCADE) whose purpose is to improve drug safety for older adults by addressing prescribing cascades through a sex and gender lens.
Methods: To create a comprehensive, internationally relevant inventory of prescribing cascades affecting older adults, the consortium has created a modified Delphi procedure where international experts in prescribing and managing pharmacotherapy for older adults will rank a list of prescribing cascades as to their clinical importance. We will use administrative and clinical data on older adults to evaluate the frequency of prescribing cascades by sex internationally, in the hospital, long-term care and community settings.
Manipulation and detection of spins at the nanoscale is of considerable contemporary interest as it may not only facilitate a description of fundamental physical processes but also plays a critical role in the development of spintronic devices. Here, we describe the application of a novel combination of transient grating excitation with Lorentz ultrafast electron microscopy to control and detect magnetization dynamics with combined nanometer and picosecond resolutions. Excitation of Ni80Fe20 thin film samples results in the formation of transient coherently precessing magnetic gratings.
View Article and Find Full Text PDF