Publications by authors named "Akemi Ido"

Although the aberrant assembly of mutant superoxide dismutase 1 (mSOD1) is implicated in the pathogenesis of familial amyotrophic lateral sclerosis (ALS), the molecular basis of superoxide dismutase 1 (SOD1) oligomerization remains undetermined. We investigated the roles of transglutaminase 2 (TG2), an endogenous cross-linker in mSOD1-linked ALS. TG2 interacted preferentially with mSOD1 and promoted its oligomerization in transfected cells.

View Article and Find Full Text PDF

Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR.

View Article and Find Full Text PDF

Accumulating evidence suggests that pathogenic TAR DNA-binding protein (TDP)-43 fragments contain a partial RNA-recognition motif domain 2 (RRM2) in amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration. However, the molecular basis for how this domain links to the conformation and function of TDP-43 is unclear. Previous crystal analyses have documented that the RRM2-DNA complex dimerizes under acidic and high salt conditions, mediated by the intermolecular hydrogen bonds of Glu246-Ile249 and Asp247-Asp247.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive muscle wasting and weakness with no effective cure. Emerging evidence supports the notion that the abnormal conformations of ALS-linked proteins play a central role in triggering the motor neuron degeneration. In particular, mutant types of superoxide dismutase 1 (SOD1) and TAR DNA binding protein 43kDa (TDP-43) are key molecules involved in the pathogenesis of familial and sporadic ALS, respectively.

View Article and Find Full Text PDF

Vaccinations targeting extracellular superoxide dismutase 1 (SOD1) mutants are beneficial in mouse models of amyotrophic lateral sclerosis (ALS). Because of its misfolded nature, wild-type nonmetallated SOD1 protein (WT-apo) may have therapeutic application for vaccination of various SOD1 mutants. We compared the effects of WT-apo to those of a G93A SOD1 vaccine in low-copy G93A SOD1 transgenic mice.

View Article and Find Full Text PDF