Adipose tissue contains multipotent cells known as adipose-derived stem/stromal cells (ASCs), which have therapeutic potential for various diseases. Although the demand for adipose tissue for research use remains high, no adipose tissue bank exists. In this study, we attempted to isolate ASCs from cryopreserved adipose tissue with the aim of developing a banking system.
View Article and Find Full Text PDFBackground Aims: Adipose tissue has therapeutic potential for spinal cord injury (SCI) because it contains multipotent cells known as adipose-derived stem/stromal cells (ASCs). In this study, we attempted intravenous ASC transplantation in rats with SCI to examine the effect on functional recovery.
Methods: ASCs (2.
Among synthetic kinesin spindle protein (KSP) inhibitor compounds, KPYB10602, a six-member lactam-fused carbazole derivative was the most potent in vitro against cell growth of human ovarian cancer, A2780. KPYB10602 caused dose-dependent suppression of tumor growth in vivo. Mitotic arrest due to KPYB10602 was confirmed in vitro, and was characterized by inhibition of securin degradation.
View Article and Find Full Text PDFAims: The purpose of this study was to elucidate the mechanism underlying the effects of adipose tissue-derived stem/stromal cell (ASC) transplantation on porcine pancreatic elastase-induced emphysema.
Materials & Methods: ASCs (2.5 × 10(6)) were transplanted into pancreatic elastase (250 U/kg)-treated rats, after which gas exchange and growth factor/cytokine levels in lung tissue were determined.
The effect of Nano PGE(1) (nanoparticles containing prostaglandin E(1)) on spinal cord injury (SCI) was investigated in rat model. Nano PGE(1) significantly and dose-dependently promoted the recovery from SCI-induced motor dysfunction, and the potency of Nano PGE(1) was comparable with successive treatment of Lipo PGE(1), and was superior to single treatment of Lipo PGE(1). Distribution study revealed that Nano PGE(1) sustained longer in the blood.
View Article and Find Full Text PDFThe present study investigated the effect of 4[(5,6,7,8-tetrahydro-5,5,8,8,-tetramethyl-2-naphthalenyl)carbamoyl] benzoic acid (Am-80), a synthetic retinoid, on spinal cord injury (SCI) in rats. Treatment with Am-80 (orally and subcutaneously) significantly promoted recovery from SCI-induced motor dysfunction. On day 28 after injury, the lesion cavity was markedly reduced, while the expression of myelin basic protein (MBP; myelin), betaIIItubulin (neuron), and glial fibrillary acidic protein (GFAP; astrocyte) was increased, in comparison with SCI controls.
View Article and Find Full Text PDFTransplantation of mature adipocyte-derived cells (dedifferentiated fat cells) led to marked functional recovery from spinal cord injury (SCI)-induced motor dysfunction in rats. When mature adipocytes were isolated from rat adipose tissue and grown in ceiling culture, transformation into fibroblast-like cells without lipid droplets occurred. These fibroblast-like cells, termed dedifferentiated fat cells (DFAT), could proliferate and could also differentiate back into adipocytes.
View Article and Find Full Text PDFThe comparison study was performed with 3 kinds of Lipo PGE(1) (5 microg/ml) preparations (Formulation A, B, and C), which are now used in clinical. Under alkali condition, Lipo PGE(1) (5 microg/ml) preparations in combination with physiological solution containing calcium ion were susceptible to stop dropping because of the formation of aggregates. There was a difference of feasibility to form aggregates among these preparations.
View Article and Find Full Text PDFThe present study investigated whether plasma could be useful as a scaffold for cell transplantation in rats with spinal cord injury (SCI). Transplantation of cells with plasma promoted the recovery of SCI-induced motor dysfunction. Immunohistochemical analysis revealed that the grafted cells had differentiated into the neural lineage.
View Article and Find Full Text PDFPC-SOD (lecithinized superoxide dismutase) is a derivative of human Cu, Zn-SOD conjugated with 4 molecules of lecithin, yet having the enzyme activity of scavenging superoxide anion (O2-). Intravenous administration of PC-SOD promoted the recovery from spinal cord injury (SCI)-induced motor dysfunction in a dose-dependent manner in rat model, when evaluated by BBB (Basso Beattie Bresnahan) score. Even when given at 24 h after SCI, PC-SOD (1 mg/kg) significantly improved motor dysfunction.
View Article and Find Full Text PDF