SLC18B1 is a sister gene to the vesicular monoamine and acetylcholine transporters, and the only known polyamine transporter, with unknown physiological role. We reveal that Slc18b1 knock out mice has significantly reduced polyamine content in the brain providing the first evidence that Slc18b1 is functionally required for regulating polyamine levels. We found that this mouse has impaired short and long term memory in novel object recognition, radial arm maze and self-administration paradigms.
View Article and Find Full Text PDFBacterial cell envelope protein (CEP) complexes mediate a range of processes, including membrane assembly, antibiotic resistance and metabolic coordination. However, only limited characterization of relevant macromolecules has been reported to date. Here we present a proteomic survey of 1,347 CEPs encompassing 90% inner- and outer-membrane and periplasmic proteins of Escherichia coli.
View Article and Find Full Text PDFTransmembrane proteins perform a variety of important biological functions necessary for the survival and growth of the cells. Membrane proteins are built up by transmembrane segments that span the lipid bilayer. The segments can either be in the form of hydrophobic alpha-helices or beta-sheets which create a barrel.
View Article and Find Full Text PDFFusion protein construction often requires peptide linkers for prolonged conformation, extended stability and enzyme activity. In this study a series of fusion between Thermotoga maritima lipase Tm1350 and Bacillus subtillis coat protein CotB, comprising of several peptide linkers, with different length, flexibility and orientations were constructed. Effects of temperature, pH and chemicals were examined, on the activity of displayed enzyme.
View Article and Find Full Text PDFWe introduce the value of information obtained by comparing alternative crystal forms of the same sub-state (of outward open UlaA, our example protein), which is found in the same lattice configuration but different space groups. We compare instability estimates obtained using this new method (alternative crystal forms) with temperature factors. Using a transport assay result, we correlate observations for two homologous secondary structure elements, and show that the alternative states method for obtaining instability estimates provide differentiating information about an important and immobilized mid-TMS region.
View Article and Find Full Text PDFWe propose that the alternative crystal forms of outward open UlaA (which are experimental, not simulated, and contain the substrate in the cavity) can be used to interpret/validate the MD results from MalT (the substrate capture step, which involves the mobile second TMSs of the V-motifs, TMSs 2 and 7). Since the crystal contacts are the same between the two alternative crystal forms of outward open UlaA, the striking biological differences noted, including rearranged hydrogen bonds and salt bridge coordination, are not attributable to crystal packing differences. Using transport assays, we identified G58 and G286 as essential for normal vitamin C transport, but the comparison of alternative crystal forms revealed that these residues to unhinge TMS movements from substrate-binding side chains, rendering the mid-TMS regions of homologous TMSs 2 and 7 relatively immobile.
View Article and Find Full Text PDFIn this issue of Structure, McCoy et al. (2016) describe the 2.55-Å X-ray structure of the outward-facing occluded conformation of the Bacillus cereus maltose transporter MalT.
View Article and Find Full Text PDFThe human lipoprotein lipase (LPL) is a therapeutic target for obesity, and inhibition of LPL with the approved small molecule agent orlistat has been widely used in clinic to treat obesity-related health problems such as diabetes and cardiovascular diseases. However, a variety of missense mutations in LPL protein have been observed, which may cause resistance or sensitization for orlistat, largely limiting the clinical applications of orlistat in obesity therapy. Here, we integrated molecular dynamics simulations and enzyme inhibition to investigate orlistat response to 16 disorder-associated missense mutations in LPL catalytic domain.
View Article and Find Full Text PDFEsterases expressed in microbial hosts are commercially valuable, but their applications are limited due to high costs of production and harsh industrial processes involved. In this study, the esterase-DSM (from Clostridium thermocellum) was expressed and successfully displayed on the spore surface, and the spore-associated esterase was confirmed by western blot analysis and activity measurements. The optimal temperature and pH of spore surface-displayed DSM was 60 and 8.
View Article and Find Full Text PDFDuring 11-12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication and funding.
View Article and Find Full Text PDFTransport systems comprise roughly 10% of all proteins in a cell, playing critical roles in many processes. Improving and expanding their classification is an important goal that can affect studies ranging from comparative genomics to potential drug target searches. It is not surprising that different classification systems for transport proteins have arisen, be it within a specialized database, focused on this functional class of proteins, or as part of a broader classification system for all proteins.
View Article and Find Full Text PDFThe Δ-distance maps can detect local remodeling that is difficult to accurately determine using superimpositions. Transmembrane segments (TMSs) 11 in both LacY and XylE of the major facilitator superfamily uniquely contribute the greatest amount of mobile surface area in the outward-occluded state and undergo analogous movements. The intracellular part of TMS11 moves away from the C-terminal domain and into the substrate cavity during the conformational change from the outward-occluded to the inward-occluded state.
View Article and Find Full Text PDFHuman monoacylglycerol lipase (MGL) catalyzes the hydrolysis of 2-arachidonoylglycerol to arachidonic and glycerol, which plays a pivotal role in the normal biological processes of brain. Co-crystal structure of the MGL in complex with its inhibitor, compound 1, shows that the helix α4 undergoes large-scale conformational changes in response to the compound 1 binding compared to the apo MGL. However, the detailed conformational transition pathway of the helix α4 in the inhibitor binding process of MGL has remained unclear.
View Article and Find Full Text PDFThe amino acid-polyamine-organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance-Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K⁺ Uptake Permease), BenE (Benzoate:H⁺ Virginia Symporter), and AE (Anion Exchanger).
View Article and Find Full Text PDFBased on alleged functional residue correspondences between FucP and LacY, a recent study has resulted in a proposed model of 3-TMS unit rearrangements [Madej et al.: Proc Natl Acad Sci USA 2013;110:5870-5874]. We rebut this theory, using 7 different lines of evidence.
View Article and Find Full Text PDFCurr Opin Microbiol
April 2014
Transport proteins have sometimes gained secondary regulatory functions that influence gene expression and metabolism. These functions allow communication with the external world via mechanistically distinctive signal transduction pathways. In this brief review we focus on three transport systems in Escherichia coli that control and coordinate carbon, exogenous hexose-phosphate and phosphorous metabolism.
View Article and Find Full Text PDFBackground: Two of the largest fully sequenced prokaryotic genomes are those of the actinobacterium, Streptomyces coelicolor (Sco), and the δ-proteobacterium, Myxococcus xanthus (Mxa), both differentiating, sporulating, antibiotic producing, soil microbes. Although the genomes of Sco and Mxa are the same size (~9 Mbp), Sco has 10% more genes that are on average 10% smaller than those in Mxa.
Results: Surprisingly, Sco has 93% more identifiable transport proteins than Mxa.
The Transporter Classification Database (TCDB; http://www.tcdb.org) serves as a common reference point for transport protein research.
View Article and Find Full Text PDFTruncated receptor ectodomains have been described for several classes of cell surface receptors, including those that bind to growth factors, cytokines, immunoglobulins, and adhesion molecules. Soluble receptor isoforms are typically generated by proteolytic cleavage of the cell surface receptor or by alternative splicing of RNA transcripts arising from the same gene encoding the full-length receptor. Both the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR) families produce soluble receptor splice variants in vertebrates and truncated forms of insulin receptor-like sequences have previously been described in .
View Article and Find Full Text PDFEvidence has been presented that 5+5 TMS and 7+7 TMS inverted repeat fold transporters are members of a single superfamily named the Amino acid-Polyamine-organoCation (APC) superfamily. However, the evolutionary relationship between the 5+5 and the 7+7 topological types has not been established. We have identified a common fold, consisting of a spiny membrane helix/sheet, followed by a U-like structure and a V-like structure that is recurrent between domain duplicated units of 5+5 and 7+7 inverted repeat folds.
View Article and Find Full Text PDFVisual rhodopsins are recognized members of the large and diverse family of G protein-coupled receptors (GPCRs), but their evolutionary origin and relationships to other proteins are not known. In a previous paper [Shlykov MA, Zheng WH, Chen JS & Saier MH Jr (2012) Biochim Biophys Acta 1818, 703-717], we characterized the 4-toluene sulfonate uptake permease (TSUP) family of transmembrane proteins, and showed that these 7-transmembrane segment (TMS) or 8-TMS proteins arose by intragenic duplication of a gene encoding a 4-TMS protein, sometimes followed by loss of a terminal TMS. In this study, we show that the TSUP, GPCR and microbial rhodopsin families are related to each other and to six other currently recognized transport protein families.
View Article and Find Full Text PDFRhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins.
View Article and Find Full Text PDFIn vitro, ribavirin acts as a lethal mutagen in Hantaan virus (HTNV)-infected Vero E6 cells, resulting in an increased mutation load and viral population extinction. In this study, we asked whether ribavirin treatment in the lethal, suckling mouse model of HTNV infection would act similarly. The HTNV genomic RNA (vRNA) copy number and infectious virus were measured in lungs of untreated and ribavirin-treated mice.
View Article and Find Full Text PDF