Publications by authors named "Akdes S Harmanci"

It is becoming more broadly accepted that human-based models are needed to better understand the complexities of the human nervous system and its diseases. The recently developed human brain organotypic culture model is one highly promising model that requires the involvement of neurosurgeons and neurosurgical patients. Studies have investigated the electrophysiological properties of neurons in such human tissues, but the maintenance of other cell types within explanted brain remains largely unknown.

View Article and Find Full Text PDF

Astrocytes exhibit diverse cellular and molecular properties across the central nervous system (CNS). Recent studies identified region-specific transcription factors (TF) that oversee these diverse properties; how sex differences intersect with region-specific transcriptional programs to regulate astrocyte function is unknown. Here, we show that the TF Nkx6.

View Article and Find Full Text PDF

The development of cell-type-specific gene therapy vectors for treating neurological diseases holds great promise, but has relied on animal models with limited translational utility. We have adapted an organotypic model to evaluate adeno-associated virus (AAV) transduction properties in living slices of human brain tissue. Using fluorescent reporter expression and single-nucleus RNA sequencing, we found that common AAV vectors show broad transduction of normal cell types, with protein expression most apparent in astrocytes; this work introduces a pipeline for identifying and optimizing AAV gene therapy vectors in human brain samples.

View Article and Find Full Text PDF

An important subset of meningiomas behaves aggressively and is characterized by multiple recurrences. We identify clinical, genetic, and epigenetic predictors of multiply recurrent meningiomas (MRMs) and evaluate the evolution of these meningiomas in patient-matched samples. On multivariable binomial logistic regression, MRMs were significantly associated with male sex ( = 0.

View Article and Find Full Text PDF

Purpose: Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies.

View Article and Find Full Text PDF

Prior studies have described the complex interplay that exists between glioma cells and neurons, however, the electrophysiological properties endogenous to tumor cells remain obscure. To address this, we employed Patch-sequencing on human glioma specimens and found that one third of patched cells in mutant (IDH ) tumors demonstrate properties of both neurons and glia by firing single, short action potentials. To define these hybrid cells (HCs) and discern if they are tumor in origin, we developed a computational tool, Single Cell Rule Association Mining (SCRAM), to annotate each cell individually.

View Article and Find Full Text PDF

Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (N = 1,856), including 103 meningiomas from a prospective clinical trial.

View Article and Find Full Text PDF

Hedgehog signaling mediates embryologic development of the central nervous system and other tissues and is frequently hijacked by neoplasia to facilitate uncontrolled cellular proliferation. Meningiomas, the most common primary brain tumor, exhibit Hedgehog signaling activation in 6.5% of cases, triggered by recurrent mutations in pathway mediators such as SMO.

View Article and Find Full Text PDF

The tumour microenvironment plays an essential role in malignancy, and neurons have emerged as a key component of the tumour microenvironment that promotes tumourigenesis across a host of cancers. Recent studies on glioblastoma (GBM) highlight bidirectional signalling between tumours and neurons that propagates a vicious cycle of proliferation, synaptic integration and brain hyperactivity; however, the identity of neuronal subtypes and tumour subpopulations driving this phenomenon is incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumours promote progression and widespread infiltration.

View Article and Find Full Text PDF

Introduction: Meningiomas are the most common primary intracranial tumor. Recently, various genetic classification systems for meningioma have been described. We sought to identify clinical drivers of different molecular changes in meningioma.

View Article and Find Full Text PDF

Communication between neurons and glia has an important role in establishing and maintaining higher-order brain function. Astrocytes are endowed with complex morphologies, placing their peripheral processes in close proximity to neuronal synapses and directly contributing to their regulation of brain circuits. Recent studies have shown that excitatory neuronal activity promotes oligodendrocyte differentiation; whether inhibitory neurotransmission regulates astrocyte morphogenesis during development is unclear.

View Article and Find Full Text PDF

The tumor microenvironment (TME) plays an essential role in malignancy and neurons have emerged as a key component of the TME that promotes tumorigenesis across a host of cancers. Recent studies on glioblastoma (GBM) highlight bi-directional signaling between tumors and neurons that propagates a vicious cycle of proliferation, synaptic integration, and brain hyperactivity; however, the identity of neuronal subtypes and tumor subpopulations driving this phenomenon are incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumors promote progression and widespread infiltration.

View Article and Find Full Text PDF

Communication between neurons and glia plays an important role in establishing and maintaining higher order brain function. Astrocytes are endowed with complex morphologies which places their peripheral processes in close proximity to neuronal synapses and directly contributes to their regulation of brain circuits. Recent studies have shown that excitatory neuronal activity promotes oligodendrocyte differentiation; whether inhibitory neurotransmission regulates astrocyte morphogenesis during development is unknown.

View Article and Find Full Text PDF

Social experience is essential for the development and maintenance of higher-order brain function. Social deprivation results in a host of cognitive deficits, and cellular studies have largely focused on associated neuronal dysregulation; how astrocyte function is impacted by social deprivation is unknown. Here, we show that hippocampal astrocytes from juvenile mice subjected to social isolation exhibit increased Ca activity and global changes in gene expression.

View Article and Find Full Text PDF

Background: RNA-sequencing has become a standard tool for analyzing gene activity in bulk samples and at the single-cell level. By increasing sample sizes and cell counts, this technique can uncover substantial information about cellular transcriptional states. Beyond quantification of gene expression, RNA-seq can be used for detecting variants, including single nucleotide polymorphisms, small insertions/deletions, and larger variants, such as copy number variants.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common primary intracranial malignant tumor and consists of three molecular subtypes: proneural (PN), mesenchymal (MES) and classical (CL). Transition between PN to MES subtypes (PMT) is the glioma analog of the epithelial-mesenchymal transition (EMT) in carcinomas and is associated with resistance to therapy. CXCR4 signaling increases the expression of MES genes in glioma cell lines and promotes EMT in other cancers.

View Article and Find Full Text PDF

Background: Meningiomas, the most common primary intracranial tumors, can be separated into 3 DNA methylation groups with distinct biological drivers, clinical outcomes, and therapeutic vulnerabilities. Alternative meningioma grouping schemes using copy number variants, gene expression profiles, somatic short variants, or integrated molecular models have been proposed. These data suggest meningioma DNA methylation groups may harbor subgroups unifying contrasting theories of meningioma biology.

View Article and Find Full Text PDF

One-fifth of meningiomas classified as benign by World Health Organization (WHO) histopathological grading will behave malignantly. To better diagnose these tumors, several groups turned to DNA methylation, whereas we combined RNA-sequencing (RNA-seq) and cytogenetics. Both approaches were more accurate than histopathology in identifying aggressive tumors, but whether they revealed similar tumor types was unclear.

View Article and Find Full Text PDF

Objective: Meningiomas are the most common primary intracranial tumor. Seizures are common sequelae of meningioma development. Meningioma patients with seizures can be effectively treated with resection, with reports of seizure freedom of 60%-90%.

View Article and Find Full Text PDF

Background: Meningiomas are the most common intracranial neoplasms. Although genomic analysis has helped elucidate differences in survival, there is evidence that racial disparities may influence outcomes. African Americans have a higher incidence of meningiomas and poorer survival outcomes.

View Article and Find Full Text PDF

Intracranial aneurysm (IA) rupture leads to subarachnoid hemorrhage, a sudden-onset disease that often causes death or severe disability. Although genome-wide association studies have identified common genetic variants that increase IA risk moderately, the contribution of variants with large effect remains poorly defined. Using whole-exome sequencing, we identified significant enrichment of rare, deleterious mutations in PPIL4, encoding peptidyl-prolyl cis-trans isomerase-like 4, in both familial and index IA cases.

View Article and Find Full Text PDF

Astrocytes are the most abundant glial cell in the brain and perform a wide range of tasks that support neuronal function and circuit activities. There is emerging evidence that astrocytes exhibit molecular and cellular heterogeneity; however, whether distinct subpopulations perform these diverse roles remains poorly defined. Here we show that the Lunatic Fringe-GFP (Lfng-GFP) bacteria artificial chromosome mouse line from both sexes specifically labels astrocyte populations within lamina III and IV of the dorsal spinal cord.

View Article and Find Full Text PDF