The effects of nonylphenol (NP) on phytoplankton and periphyton were studied in 230 L outdoor microcosms. Phytoplankton cell density and biomass, phytoplankton and periphyton diversity, and assemblage composition were analyzed during a four-week preapplication period, followed by six weeks of NP treatment via controlled release and a six weeks postapplication period. Changes in species richness and diversity were not correlated with NP concentrations.
View Article and Find Full Text PDFA single branched isomer of p-nonylphenol, 4(3',6'-dimethyl-3'-heptyl)-phenol, previously identified by gas chromatography-mass spectrometry as one of the major constituent isomers in p-nonylphenol (constituting approximately 10% of all its isomers), was synthesized and used in studies of its bioaccumulation and excretion in the hermophroditic pond snail Lymnaea stagnalis L. Branched isomers of nonylphenol are perceived to have more estrogenlike toxicity than the straight-chain isomers in addition to being more resistant to biodegradation in the environment. With an average static exposure concentration of 104 microg/L (range: 92-116 microg/L) in water at 19 degrees C for 8 d, the uptake of the compound was found to be fairly rapid, reaching a peak concentration of 23,548 microg/kg of whole tissue wet weight after 5 d and a peak bioaccumulation factor (BAFw) of 242 (5,562, based on lipid weight) after 3 d.
View Article and Find Full Text PDFThe elimination half-lives (t1/2) in Sprague-Dawley rats for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 1,2, 3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (HxCDD), 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD) and 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin (OCDD) were estimated in long-term studies by Schlatter, Poiger and others. Furthermore, there are some published half-lives of TCDD in adult humans. The average half-life of TCDD in adult humans is approximately 2840 days, while in Sprague-Dawley rats the average t1/2 of TCDD is 19 days.
View Article and Find Full Text PDFWe show how reformulating a first-order response theory with respect to both toxicant concentration and exposure time, in terms of relative instead of absolute increments, leads to a generalized version of Haber's law and to a combined sigmoid model for concentration and time response, derived on analytical rather than empirical grounds. More general presuppositions of Haber's law (without assuming sigmoid response) are briefly discussed. The relative intensities of time response and concentration response are measured by a single dimensionless parameter, characterizing each quadruple {toxicant, route, species, adverse effect}.
View Article and Find Full Text PDFPhotochemistry studies can be helpful in assessing the environmental fate of chemicals. Photochemical reactions lead to the formation of by-products that can exhibit different toxicological properties from the original compound. For this reason the photochemical behavior of the herbicide acifluorfen (5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid) in the presence of different solvents was studied.
View Article and Find Full Text PDF