Publications by authors named "Akash S Rasal"

Heterostructure engineering offers a powerful approach to creating innovative electrocatalysts. By combining different materials, it can achieve synergistic effects that enhance both charge storage and electrocatalytic activity. In this work, it is capitalized on this concept by designing a 1D/3D CoWO(OH)·HO/molybdenum disulfide (CTH/MoS) heterostructure.

View Article and Find Full Text PDF

The fabrication of multifunctional nano-therapies has increased gradually to strengthen the therapeutic performance and minimize adverse effects of traditional cancer treatment strategies. Currently, we have designed a facile preparation drug-loaded nanocarrier for multimodal cancer therapy upon external stimuli. First, defect-rich molybdenum oxo-sulfide (MoOS) quantum dots (QDs) was synthesized via rapid biomineralization techniques with superior optical quantum yield reaching upto 37.

View Article and Find Full Text PDF

New possibilities for the development of biosensors that are ready to be implemented in the field have emerged thanks to the recent progress of functional nanomaterials and the careful engineering of nanostructures. Two-dimensional (2D) nanomaterials have exceptional physical, chemical, highly anisotropic, chemically active, and mechanical capabilities due to their ultra-thin structures. The diversity of the high surface area, layered topologies, and porosity found in 2D nanomaterials makes them amenable to being engineered with surface characteristics that make it possible for targeted identification.

View Article and Find Full Text PDF

Development of tumor microenvironment (TME) modifying nanomedicine with cooperative effect between multiple stimuli responsive therapeutic modalities is necessary to achieve lower dosage induced tumor specific therapy. Accordingly, herein, a multifunctional MnOx NSs@BSA-IR780-GOx nanocomposite (MBIG NCs) is developed to modulate the oxidative stress in TME, and thus attain higher therapeutic efficacy. In the presence of glucose, the as-synthesized MBIG NCs are served as a chemodynamic agents and generated reactive oxygen species (ROS) by self-activation through a cascade of reactions from glucose oxidase (GOx) and manganese oxide nanosheets (MnOx NSs).

View Article and Find Full Text PDF

Hydrogen has a high energy density of approximately 120 to 140 MJ kg, which is very high compared to other natural energy sources. However, hydrogen generation through electrocatalytic water splitting is a high electricity consumption process due to the sluggish oxygen evolution reaction (OER). As a result, hydrogen generation through hydrazine-assisted water electrolysis has recently been intensively investigated.

View Article and Find Full Text PDF

The design of therapeutic nanoplatforms based on fluorescent carbon dots (CDs) has become a viable strategy because of their aqueous solubility, biocompatibility, and ease of further functionalization. By doping various heteroatoms into pristine CDs structures, we synthesized N-, Cl-, and S-doped CDs (NClS/CDs), as well as Se-, N-, and Cl-doped CDs (NClSe/CDs) with superior optoelectronic properties using rapid and straightforward microwave heating. The quantum efficiencies of these NClS/CDs and NClSe/CDs were enhanced to 30.

View Article and Find Full Text PDF

The implementation of a structure-designed strategy to construct hierarchical architectures of multicomponent metal oxide-based electrode materials for energy storage devices is in the limelight. Herein, we report NiO nanoflakes impregnated on ZnCoO nanorod arrays as ZnCoO@NiO core-shell structures on a flexible stainless-steel mesh substrate, fabricated by a simple, cost-effective and environmentally friendly reflux condensation method. The core-shell structure of ZnCoO@NiO is used as an electrode material in a supercapacitor as it provides a high specific surface area (134.

View Article and Find Full Text PDF

Designing a low-cost, highly efficient, and stable electrocatalyst that can synergistically speed up the reduction of polysulfide electrolytes while operative for long periods in the open air is critical for the practical application of quantum dot-sensitized solar cells (QDSSCs), but it remains a challenging task. Herein, a simple, straightforward, and two-step nanocomposite engineering approach that simultaneously combines metallic copper chalcogenides (MC) either Cu S or Cu Se with S, N dual-doped carbon (SNC) sources for devising high-quality counter electrode (CE) film are reported. First, the hierarchically assembled MC nanostructures are obtained using microwave-assisted synthesis.

View Article and Find Full Text PDF

The surface of TiC MXene nanosheets (TC NSs) was first modified with the antioxidants sodium ascorbate (SA) and dopamine (DA) (DSTC NS) to improve their stability in oxidative and hydration environments and thereby improve their bioapplications. This novel approach not only improved MXene stability by arresting oxidation but also increased the available functional groups for further functionalization with various biomolecules. The DSTC NSs were then sequentially conjugated with enzyme glucose oxidase (GOx) and photosensitizer Ce6 to render the obtained CGDSTC NSs with glucose starvation and photodynamic therapeutic properties and thus attain high efficiency in killing cancer cells through the cooperative effect.

View Article and Find Full Text PDF

In this study, for the first time, red-emitting CsMgPbI quantum dots (QDs) are prepared by doping with magnesium (Mg) ions via the one-pot microwave pyrolysis technique. The X-ray diffraction and X-ray photoelectron spectroscopy results have confirmed partial substitution of Pb by Mg inside the CsPbI framework. The as-synthesized CsMgPbI QDs have exhibited excellent morphology, higher quantum yield (upto ∼89%), better photostability and storage stability than undoped CsPbI.

View Article and Find Full Text PDF

Herein, we report for the first time a facile strategy for the highly efficient (NH)CsPbBr quantum dots (QDs). By modulating the amount of ammonium, (NH)CsPbBr QDs with different photoluminescence (PL) quantum yields (QY) were synthesized. The results of X-ray diffraction and X-ray photoelectron spectroscopy showed that the crystal structure of (NH)CsPbBr was altered by incorporation of NH cations into the CsPbBr lattice.

View Article and Find Full Text PDF

For quantum dot sensitized solar cells (QDSSCs), modifying conservative polysulfide electrolytes with polymer additives has been proven as an effective method to control charge recombination processes at the TiO/QDs/electrolyte interface and to accomplish efficient cell devices. In this respect, the polysulfide electrolyte is modified with polymeric and sulfur-rich graphitic carbon nitride (SGCN) to enhance the photovoltaic performance of QDSSCs. For the first time, SGCN is used to passivate surface trap states and act as the steric hindrance between TiO/QDs/electrolyte interfaces.

View Article and Find Full Text PDF

Nanostructured NiCoO is a promising material for energy storage systems. Herein, we report the binder-free deposition of porous marigold micro-flower like NiCoO (PNCO) on the flexible stainless-steel mesh (FSSM) as (PNCO@FSSM) electrode by simple chemical bath deposition. The SEM and EDS analysis revealed the marigold micro-flowers like morphology of NiCoO and its elemental composition.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2trni5k54o0quuipgj4d2iv2u6eiv921): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once