Publications by authors named "Akash R Pattnaik"

Intracranial EEG is used for two main purposes: to determine (i) if epileptic networks are amenable to focal treatment and (ii) where to intervene. Currently, these questions are answered qualitatively and differently across centres. There is a need to quantify the focality of epileptic networks systematically, which may guide surgical decision-making, enable large-scale data analysis and facilitate multi-centre prospective clinical trials.

View Article and Find Full Text PDF

Patients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data are captured during this process, but these data currently play a small role in surgical planning.

View Article and Find Full Text PDF

Studies of intracranial EEG networks have been used to reveal seizure generators in patients with drug-resistant epilepsy. Intracranial EEG is implanted to capture the epileptic network, the collection of brain tissue that forms a substrate for seizures to start and spread. Interictal intracranial EEG measures brain activity at baseline, and networks computed during this state can reveal aberrant brain tissue without requiring seizure recordings.

View Article and Find Full Text PDF

Patients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data is captured during this process, but these data currently play a small role in surgical planning.

View Article and Find Full Text PDF

Objective: Clinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug-resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of "electrode reconstruction," which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction.

View Article and Find Full Text PDF

Introduction: Intracranial EEG (IEEG) is used for 2 main purposes, to determine: (1) if epileptic networks are amenable to focal treatment and (2) where to intervene. Currently these questions are answered qualitatively and sometimes differently across centers. There is a need for objective, standardized methods to guide surgical decision making and to enable large scale data analysis across centers and prospective clinical trials.

View Article and Find Full Text PDF

Epilepsy is a neurological disorder characterized by recurrent seizures which vary widely in severity, from clinically silent to prolonged convulsions. Measuring severity is crucial for guiding therapy, particularly when complete control is not possible. Seizure diaries, the current standard for guiding therapy, are insensitive to the duration of events or the propagation of seizure activity across the brain.

View Article and Find Full Text PDF

Background: Collaboration between epilepsy centers is essential to integrate multimodal data for epilepsy research. Scalable tools for rapid and reproducible data analysis facilitate multicenter data integration and harmonization. Clinicians use intracranial EEG (iEEG) in conjunction with non-invasive brain imaging to identify epileptic networks and target therapy for drug-resistant epilepsy cases.

View Article and Find Full Text PDF

Objective: Evaluating patients with drug-resistant epilepsy often requires inducing seizures by tapering antiseizure medications (ASMs) in the epilepsy monitoring unit (EMU). The relationship between ASM taper strategy, seizure timing, and severity remains unclear. In this study, we developed and validated a pharmacokinetic model of total ASM load and tested its association with seizure occurrence and severity in the EMU.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers wanted to learn how sleep and seizures affect spikes in the brain to help plan surgery for people with epilepsy who don't respond to medicine.
  • They looked at data from 101 patients with epilepsy and found that spikes happen more often during sleep than when people are awake or after a seizure.
  • The study showed that using sleep-related changes in spike activity can help find where seizures start in the brain, which is important for doctors when planning surgery.
View Article and Find Full Text PDF

Accurate segmentation of surgical resection sites is critical for clinical assessments and neuroimaging research applications, including resection extent determination, predictive modeling of surgery outcome, and masking image processing near resection sites. In this study, an automated resection cavity segmentation algorithm is developed for analyzing postoperative MRI of epilepsy patients and deployed in an easy-to-use graphical user interface (GUI) that estimates remnant brain volumes, including postsurgical hippocampal remnant tissue. This retrospective study included postoperative T1-weighted MRI from 62 temporal lobe epilepsy (TLE) patients who underwent resective surgery.

View Article and Find Full Text PDF

Planning surgery for patients with medically refractory epilepsy often requires recording seizures using intracranial EEG. Quantitative measures derived from interictal intracranial EEG yield potentially appealing biomarkers to guide these surgical procedures; however, their utility is limited by the sparsity of electrode implantation as well as the normal confounds of spatiotemporally varying neural activity and connectivity. We propose that comparing intracranial EEG recordings to a normative atlas of intracranial EEG activity and connectivity can reliably map abnormal regions, identify targets for invasive treatment and increase our understanding of human epilepsy.

View Article and Find Full Text PDF

Objective: Seizure frequency and seizure freedom are among the most important outcome measures for patients with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid, large-scale retrospective research.

View Article and Find Full Text PDF