Publications by authors named "Akash Pal"

Article Synopsis
  • Neuropeptides play a crucial role in brain functions related to feeding and behavior, but many details about their interactions in the awake brain remain unclear.
  • The study focuses on how specific neurons in the hypothalamus react to different neuropeptides to regulate eating and the feeling of fullness.
  • Results show that the release of hunger-related and satiety-related neuropeptides can either compete or cooperate to control important signaling pathways, helping to gradually promote feelings of fullness during meals.
View Article and Find Full Text PDF

Health-seeking behavior represents the actions taken to prevent the disease and promote health. It emphasizes both the illness response and the healthcare utilization driven by perceived threat and effectiveness of the preventive behavior. This study aims to scrutinize the progression of research conducted on health-seeking behavior in high-risk period such as COVID-19 using bibliometric analysis.

View Article and Find Full Text PDF

We investigated how transmission of hunger- and satiety-promoting neuropeptides, NPY and αMSH, is integrated at the level of intracellular signaling to control feeding. Receptors for these peptides use the second messenger cAMP. How cAMP integrates opposing peptide signals to regulate energy balance, and the spatiotemporal dynamics of endogenous peptidergic signaling, remain largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • * NPY release decreases levels of cAMP in certain brain neurons, while αMSH release increases cAMP, showing that both neuropeptides regulate this messenger in competitive and state-dependent ways.
  • * When eating occurs, high levels of αMSH and low levels of NPY work together to maintain higher cAMP levels, ultimately promoting a sense of fullness over time.
View Article and Find Full Text PDF

We developed a platform that utilizes a calcium-dependent luciferase to convert neuronal activity into activation of light sensing domains within the same cell. The platform is based on a luciferase variant with high light emission split by calmodulin-M13 sequences that depends on influx of calcium ions (Ca) for functional reconstitution. In the presence of its luciferin, coelenterazine (CTZ), Ca influx results in light emission that drives activation of photoreceptors, including optogenetic channels and LOV domains.

View Article and Find Full Text PDF

Unlabelled: The ability to manipulate specific neuronal populations of the spinal cord following spinal cord injury (SCI) could prove highly beneficial for rehabilitation in patients through maintaining and strengthening still existing neuronal connections and/or facilitating the formation of new connections. A non-invasive and highly specific approach to neuronal stimulation is bioluminescent-optogenetics (BL-OG), where genetically expressed light emitting luciferases are tethered to light sensitive channelrhodopsins (luminopsins, LMO); neurons are activated by the addition of the luciferase substrate coelenterazine (CTZ). This approach utilizes ion channels for current conduction while activating the channels through the application of a small chemical compound, thus allowing non-invasive stimulation and recruitment of all targeted neurons.

View Article and Find Full Text PDF

Understanding percepts, engrams and actions requires methods for selectively modulating synaptic communication between specific subsets of interconnected cells. Here, we develop an approach to control synaptically connected elements using bioluminescent light: Luciferase-generated light, originating from a presynaptic axon terminal, modulates an opsin in its postsynaptic target. Vesicular-localized luciferase is released into the synaptic cleft in response to presynaptic activity, creating a real-time Optical Synapse.

View Article and Find Full Text PDF

In genetic and pharmacological models of neurodevelopmental disorders, and human data, neural activity is altered within the developing neocortical network. This commonality begs the question of whether early enhancement in excitation might be a common driver, across etiologies, of characteristic behaviors. We tested this concept by chemogenetically driving cortical pyramidal neurons during postnatal days 4-14.

View Article and Find Full Text PDF

Neurons and glia are functionally organized into circuits and higher-order structures that allow the precise information processing required for complex behaviors. To better understand the structure and function of the brain, we must understand synaptic connectivity, action potential generation and propagation, as well as well-orchestrated molecular signaling. Recently, dramatically improved sensors for voltage, intracellular calcium, and neurotransmitters/modulators, combined with advanced microscopy provide new opportunities for in vivo dissection of cellular and circuit activity in awake, behaving animals.

View Article and Find Full Text PDF

Mice socially isolated during adolescence exhibit behaviors of anxiety, depression and impaired social interaction. Although these behaviors are well documented, very little is known about the associated neurobiological changes that accompany these behaviors. It has been hypothesized that social isolation during adolescence alters the development of the prefrontal cortex, based on similar behavioral abnormalities observed in isolated mice and those with disruption of this structure.

View Article and Find Full Text PDF

Previous work has demonstrated that fusion of a luciferase to an opsin, to create a luminescent opsin or luminopsin, provides a genetically encoded means of manipulating neuronal activity via both chemogenetic and optogenetic approaches. Here we have expanded and refined the versatility of luminopsin tools by fusing an alternative luciferase variant with high light emission, Gaussia luciferase mutant GLucM23, to depolarizing and hyperpolarizing channelrhodopsins with increased light sensitivity. The combination of GLucM23 with Volvox channelrhodopsin-1 produced LMO4, while combining GLucM23 with the anion channelrhodopsin iChloC yielded iLMO4.

View Article and Find Full Text PDF