Using first-principles calculations, we investigate six transition-metal nitride halides (TMNHs): HfNBr, HfNCl, TiNBr, TiNCl, ZrNBr, and ZrNCl as potential van der Waals (vdW) dielectrics for transition metal dichalcogenide (TMD) channel transistors. We calculate the exfoliation energies and bulk phonon energies and find that the six TMNHs are exfoliable and thermodynamically stable. We calculate both the optical and static dielectric constants in the in-plane and out-of-plane directions for both monolayer and bulk TMNHs.
View Article and Find Full Text PDFThe transfer-free direct growth of high-performance materials and devices can enable transformative new technologies. Here, room-temperature field-effect hole mobilities as high as 707 cm V s are reported, achieved using transfer-free, low-temperature (≤120 °C) direct growth of helical tellurium (Te) nanostructure devices on SiO /Si. The Te nanostructures exhibit significantly higher device performance than other low-temperature grown semiconductors, and it is demonstrated that through careful control of the growth process, high-performance Te can be grown on other technologically relevant substrates including flexible plastics like polyethylene terephthalate and graphene in addition to amorphous oxides like SiO /Si and HfO .
View Article and Find Full Text PDF